International Journal of Computational Linguistics and Applications vol. 7, no. 2, 2016, pp. 29-44
Received 07/02/2016, accepted 07/03/2016, final 19/09/2016
ISSN 0976-0962, http://ijcla.bahripublications.com

Identifying Multiple Topics in Texts

MOHAMED MOUINE!, DIANA INKPEN!,
PIERRE-OLIVIER CHARLEBOISZ AND TRI HO?

L University of Ottawa, Canada
2 ReDock Inc., Canada

ABSTRACT

In this paper, we present an innovative method for multi-label text
classification. Our method uses Lucene to index texts and then
assigns one or more classes to a new text based on its similarity
relative to an annotated corpus. For finer granularity, we split the
text into phrases, and then we focus on the noun phrases. Instead
of classifying the entire text, we classify each noun phrase. The
result of classifying the text is then assembled as the set of classes
allocated to its noun phrases.

KEYWORDS: multi-label text classification, indexing, recommender
systems, noun phrase extraction

1 INTRODUCTION

Automatic text classification is concerned with learning from a cor-
pus of labelled documents. Often, each document is assigned to
a single class from a set of disjoint classes. If we have only two
classes, the problem is called binary classification. If we have a set
C on n classes, the problem is called n-ary classification. Less of-
ten, we encounter problems that need to assign more than one class
to each document; this is called a multi-class or multi-label clas-
sification problem. In multi-label classification, each document is
assigned to a set of classes £ C C.

This is a pre-print version of the paper, before proper
formatting and copyediting by the editorial staff.



30 M. MOUINE, D. INKPEN, P.-O. CHARLEBOIS, T. HO

According to [1], we can group the existing methods for multi-
label classification into two main categories: problem transforma-
tion methods and algorithm adaptation methods. Problem transfor-
mation methods transform the multi-label classification problem
into one or more single-label classification problems, while adap-
tation methods extend specific learning algorithms in order to han-
dle multi-label data directly. The method that we propose in this
paper can be placed in the group of adaptation methods.

We present in this paper three versions of our method of multi-
label text classification. Our method takes as input a corpus of
manually annotated texts. Experts analysed each text and assigned
classes according to the topics discussed. To classify a new text,
we calculate the similarity of it with all the texts of the corpus. We
retain only the five most similar texts. In the first version, we use a
discriminative algorithm to hold classes that have the highest prob-
ability to be attributed to the new text. We consider this version as
a baseline. This version is preferred in areas where the number of
topics covered in the text is relatively low (2 to 3 maximum). In the
second version, we keep the same features as in the first version,
but we refine the model.

Based on the annotated corpus, we prepare a statistical model
of class co-occurrence. This model allows us, knowing a class, to
calculate the probability that another class can co-occur with it in
the same text. In the third version, we take into consideration com-
plex texts that may have a high number of topics (up to ten topics).
The results of the first and second version may be biased in such a
case. We divide the problem then into several problems. We split
the text into several phrases (noun phrases). We classify these noun
phrases. Finally, the union of all the classes of the noun phrases is
used for the final text classification.

In the next section, we give an overview of the related work.
Then we present the problem and why we need such a method. In
section 5, we explain the idea of our approach. Then, in Section 6
we show the first version of our method, analysis of the results, and
the types of text for which this version has good results. We refine



IDENTIFYING MULTIPLE TOPICS IN TEXTS 31

these results in the second version of our method (section 7). We
use a statistical model to predict the other classes that have a high
probability of being among the results. For a more complex text,
that needs to be attributed to a large number of classes, we present
a third version of our method (section 8). The latter versions led to
the best results for the corpus used in this work.

2 RELATED WORK

The problem of classification has been widely studied in data min-
ing, machine learning, databases, and information retrieval com-
munities with many applications in a diversity of domains, such as
targeted marketing, medical diagnosis, newsgroups filtering, and
document organization. In [2], we can find a survey of a wide va-
riety of text classification algorithms. Web documents and elec-
tronic documents in general contain a lot of text written in natural
language. Manually analysing a massive amount of data within a
short amount of time is impossible. Automatic text classification
allows us to save valuable time, which explains its use in several
areas.

One of the first areas in which text classification was used is
spam filtering [3] [4], and it was expanded to classify the e-mails
by subject or by type (promotions, social networks, etc.). A va-
riety of supervised methods can be used for document organiza-
tion in many domains such as large digital libraries of documents,
web collections, scientific literature, or even social feeds. Hierar-
chically organized document collections can be particularly useful
for browsing and retrieval [S]. Another important domain that of
is customer reviews, which are often short text documents that can
be mined to determine user opinions and other useful information
from the reviews [6].

Most of the news services today are electronic in nature, since
a large volume of news articles are created every single day by
many organizations. In such cases, it is difficult to organize the
news articles manually. Therefore, automated methods can be very



32 M. MOUINE, D. INKPEN, P.-O. CHARLEBOIS, T. HO

useful for news categorization in a variety of web portals [7]. This
application is also referred to as text filtering. Our current study fits
into this type of this application.

There are several methods and algorithms used in the literature
for text classification. We cannot recommend any of them as the
best, because this depends on the application, the parameters of the
algorithms, the type of expected results, the kinds of documents,
etc.

One of the oldest methods used in the classification in general
and applied to text classification is decision trees [8]. This method
searches for a hierarchical division of the underlying data space,
based on different characteristics/features extracted from texts. The
hierarchical division of the data space is designed to create class
scores that are asymmetrical in terms of the distribution of their
class. Decision trees examine each feature in order to build a tree
that split the data into classes starting with the features that have the
highest discrimination power (according to an entropy-based mea-
sure named InfoGain). Here, we also mention the widely used Sup-
port Vector Machines (SVM) classifier which partitions the data
space between two classes and determines the optimal boundaries
between them. Another classifier that was applied to text data is the
Neural Network (NN) classifier [9], which adapts to the training
data based on the word features. Both SVM and NN are discrim-
inative classifiers, as opposed to the generative classifiers, such as
Bayesian classifiers. The latter build probabilistic classifiers based
on modelling of the underlying characteristics of words features
into different classes. The idea is then to classify text based on the
posterior probability of documents belonging to different classes
based on the word occurrences in documents. Almost all classi-
fiers can be adapted to the case of text data. Some of the other
classifiers frequently used include k Nearest Neighbour classifiers,
rule-based classifiers, and genetic algorithms.

Other works that are closely-related to our work was described
in [10], which treats the topic of multi-label classification and in
[11], which proposed binary classifiers that index the texts using



IDENTIFYING MULTIPLE TOPICS IN TEXTS 33

Lucene®. [12] used genetic programs to construct Lucene search
queries. In these works, the text is analyzed as a single unit. We
show in this paper that the multi-label classification obtains better
results if we split the text into several subdivisions and classify
them separately.

3 PROBLEM STATEMENT

The manual analysis of a text is time consuming. A machine cannot
completely replace a human being in this task. However, the ma-
chine can be very useful help to help the human to make a decision.
An automatic system can be used to save a lot of time when deal-
ing with large amounts of texts, in order to perform summarization,
information extraction, information retrieval, or classification.
Let’s take a concrete example that we study in this paper. An
expert must analyse one or more Request For Proposals (RPF).
Each RFP contains between 30 and 300 pages. A decision must be
taken at the end of this analysis. The expert needs to decide whether
or not to draft a response for a RFP. To make such a decision, he
or she needs to check the availability of resources that could ac-
complish the work requested in the proposal. In other words, the
expert analyses the CVs (curriculum vitaes) of available employ-
ees and the project descriptions that are created by internal and
external consultants, in order to compare them to what is required.
Many of the RFPs that are received by organizations are long and
complicated to analyse. Therefore, their analysis is a task that con-
sumes a lot of time and resources within these organizations. Due
to the length and complexity of the processes, human decision in
a similar situation may not be consistent (may be biased). It is dif-
ficult for a human expert to analyse a long document, extract all
the requirements and find the necessary resources (from hundreds
of CVs and project descriptions) in a precise and efficient way. In
order to help the human experts, our system performs several op-
erations on the RFPs. To start with, each document uploaded in the

3 Lucene is Java library for indexing and search.



34 M. MOUINE, D. INKPEN, P.-O. CHARLEBOIS, T. HO

system is segmented into several parts. For simplicity and because
of the structure of the documents, each paragraph is considered a
segment. Experts according to the topics covered in these segments
classified the old documents that have been uploaded into the sys-
tem and segmented over the years. Figure 1 shows an example of a
segment with the topics that have been assigned by the experts.

We need our system to analyse each segment of the RFP to ex-
tract its meaning and identify the topics discussed is the segment.
The expert thus will have an overall idea of the content of the doc-
ument. The expert can decide whether or not to continue to analyse
this RFP in more detail. If the decision is to continue, extracting the
requirements may prove to be easier by using the topics identified
by the system. Moreover, in order to make the decision whether to
draft a response or not, the expert has to know if the company has
the resources requested. The goal of our system is to analyse the
CVs and descriptions of projects in the same way as the RFP, in or-
der to make it easier to match the extracted topics / classes directly
among the RFP and the available resources.

4 DATA

Many companies make bids to answer RFPs. An RFP can contain
several fields. Typically, these companies are specialized in specific
domains. Our corpus was provided by a company specialized in the
domain of information technology (IT). Our method can be applied
to any field. However, the data used for training our models must
be of the same domain as the text that we want to classify. Words
can have different meanings depending on the field and thus have a
different importance in each domain. We collected 1350 segments
annotated by human experts. According to the topics discussed,
experts assigns labels to text. Each segment is assigned to multiple
classes. The number of classes is between 3 and 10 (see Figure 1
for an example).

We need to index a part of the corpus for training purposes. Our
corpus consists of 1350 segments. We used 950 from them as train-
ing data. We set several parameters during the validation phase. For



IDENTIFYING MULTIPLE TOPICS IN TEXTS 35

Text segment:

Commitment is required among leaders to ensure that the leadership of
the transformation is effective in driving delivery of the required business
outcomes (including culture) and addressing the change imperatives.
More specifically, that their behaviour is consistent with the objectives of
the transformation including:

— Developing and communicating the vision clearly and in a compelling
fashion.

— Demonstrating unequivocal and united commitment to realizing the
vision and new ways of working.

— Demonstrating that they personally have changed and are adopting the
new ways of working and leading.

— Enabling change by making timely and appropriate decisions which
elicit action in the transformation.

Topics:

Leadership Transformation, Business Outcomes, Business Outcomes
Delivery, Developing Vision, Communicating Vision, Demonstrating
Commitment, Enabling Change.

Fig. 1. Example of text with the topics specified by the user

this phase, we reserved 250 segments as validation data that we use
to choose the best models (parameter values). The rest of the data,
150 segments, are used as test data, in order test whether the results
are good on new text segments.

5 APPROACH

Every segment is composed of many words and phrases. Based
on their positions and the number of occurrences, the system cre-
ates standard vector space models. Each dimension corresponds
to a separate term. It gives more importance to words that often
appear (term frequency) in the segment, but are relatively rare in
the entire corpus (inverse document frequency). The segments and
queries are represented as vectors. If a term appears in a segment,



36 M. MOUINE, D. INKPEN, P.-O. CHARLEBOIS, T. HO

its value in the vector is non-zero. The vector is represented as:
V = [wl,w2,...,wn], where w is the weight of each term. Since
the system can compare different segments to find out the closest
matches.

To classify a new segment, the system creates a vector repre-
senting this segment and computes the similarity of this vector to
all the vectors of the vector space. In other words, the new segment
is considered as a query and the system computes a similarity (co-
sine similarity) with all segments of our corpus.

After retrieving the list of all closely matched segments to a
given segment, the system will extract all the classes that are bound
to those segments in the training data. These classes will be run
through a discriminative algorithm (see Algorithm 1) to find out
what are the most common classes to choose as the classes to be
assigned to the new segment.

The role of the algorithm that we propose and that we call the
discriminative algorithm is to find the classes that are most likely
to be assigned to a new segment that we want to classify. The most
similar segments to the new segment are very likely to address the
same topics covered in the new segment. Nevertheless, as a seg-
ment address several topics, its segments can be address, in ad-
dition to the topics we are interested in, other topics that are not
covered in the new segment. We compute the similarities of a new
text to the segments in the training data and then take the classes
only from the top most similar segments. In order to minimize the
error rate, our algorithm considers only the topics that occur most
often in the considered segments.



IDENTIFYING MULTIPLE TOPICS IN TEXTS 37

— Each segment from the result has a similarity score to the
new segment. This score is applied for all classes that
belong to each segment.

— All of the classes’ labels will be put into a matrix using the
normalized form of the label as the key. The computed
value for each key is
calculated based on the addition of all the scores of the
same classes in all segments.

— These values are ranked: the higher one is the best.

— The system can extract a number of classes out of this list
or all of them.

Algorithm 1: The discriminative algorithm

6 DOCUMENT CLASSIFICATION WITH LUCENE

In general, a classifier takes some input (represented as a set of
features) and returns a classification of the input over a finite num-
ber of discrete categories. The goal of text classification is to as-
sign each text to some categories. Given a set of texts that contain
discrete category labels, we need a classifier that can assign these
labels to new documents based on the similarity of the new docu-
ments to the labelled documents (training data).

We use Lucene to index the training data, and then we use this
index to do a first-best classification of the test data. In the section
6.1, we will see how we train a classifier using the idex produced
by Lucene and in the section 6.2, we will explain how we classify
anew segment.

6.1 Building the Index

We build a Lucene index over all the documents in the training
data. Each segment is processed into a Lucene Document that has
two fields: content and topics. Take the example of Figure 1, the



38 M. MOUINE, D. INKPEN, P.-O. CHARLEBOIS, T. HO

first part called "text” would be in the field “content” and the sec-
ond part called "topics” would be in the field "topics” of the Lucene
document. In this way, we can find the classes (topics) of each in-
dexed segment in Lucene.

We need to convert the text data in fundamental units called
tokens. An analyser (preprocessor) is used for this task. We de-
scribe the analyser in more detail below. During this analysis, the
text undergoes several steps: extraction of words, suppression of
the most common words (stopwords) and punctuation, reduction of
the words to their base forms (morphological analysis), and lower
casing. This text analysis is performed before indexing and query
processing. It converts the text data into tokens and these tokens
are added as terms to the Lucene index.

MORPHOLOGICAL ANALYSIS A stemmer is a simple algorithm
that removes the most common morphological and inflexional end-
ings from words, in order to do a term normalisation process, so
that we can recognize different variants of each term. One of the
most used stemmers is the Porter stemmer [13]. The same author
later developed Snowball [14], to improve on the previous version
by eliminating some of the inaccurate stems produced by the Porter
stemmer and to extend it to support 13 other languages. Another
process of grouping inflected forms of a word is a lemmatisation.
This process is closely related to stemming. The lemmatiser pro-
duce a base form of a word. The difference is that a stemmer op-
erates on a single word to produce a part of a word as the stem
without knowledge of the context, and therefore cannot discrimi-
nate between words that have different meanings based on the part
of speech.

The lemmatiser itself can be used in place of the stemmer be-
cause this technique can incorporate the same stemmer processes
at the same time.

We use an algorithm of lemmatization based on WordNet*.
There are two types of processes used in our algorithm to convert

* WordNet is a lexical database for English.



IDENTIFYING MULTIPLE TOPICS IN TEXTS 39

inflected words to their base form. The process starts with check-
ing the exception list for each syntactic category, followed by ex-
ecuting the detachment rules based on the list of the inflectional
endings on each syntactic category. The exception lists contain a
list of strings (in alphabetical order) that cannot be processed by
the morphological transformation algorithm.

Each line of the exception list contains an inflected word with
its base form(s). If the inflected word is not found in exception
list, it will be passed to the morphological transformation process,
which is based on detachment rules, in order to find the base form
of the word by suffix matching.

We use three different analysers. This allows us to see how
different strategies affect classification. The three analysers avail-
able are: the Lucene StandardAnalyzer, which chains together a
StandardTokenizer that breaks the text into a stream of words, dis-
carding whitespace and punctuation, followed by a StandardFilter,
a LowerCaseFilter, and then a StopFilter, which uses a list of En-
glish stop words; an analyser that chains together just a Standard-
Tokenizer and a LowerCaseFilter; and an Analyser that uses only
a Lucene NGramTokenizer to index the data using 4-grams.

6.2 Using the Index for Classification

To use Lucene to classify a document from the test set, we tokenize
the new segment and create a Lucene query over its tokens. We do
a search on the index that was built on the training data. The results
of the research are a set of segments from the training corpus that
are the most similar to the segment we want to classify (the query).
These results are sorted according to the similarity score. As we
have explained before, we indexed each segment and its topics in
one Lucene document (with two fields) in order to retrace the top-
ics of each segment. We use the topics of the top-scoring segment
as output of the classifier.

We consider the top 10 segments (with the highest scores). The
discriminative algorithm computes from all the topics of these 10
segments the topics to be assigned to the new segment.



40 M. MOUINE, D. INKPEN, P.-O. CHARLEBOIS, T. HO

Table 1 shows the result of this classifier on the test data, in
terms of precision, recall and F1-measure (see the second column,
named Lucene). We consider that these results are a baseline for
our next experiments; we want to design a method that can obtain
better results than this baseline.

In the next section, we propose to improve the performance
of this version by using of an item-based recommender algorithm
to predict, based on a statistical model, other topics that may be
considered, knowing the topics resulting from the first version (our
baseline algorithm).

7 RECOMMENDER

An item-based recommender is a flexible and easy to implement
algorithm with a diverse range of applications.

The item-based recommendation algorithm takes as input cus-
tomer preferences in terms on preferred items and generates an
output recommending similar items, with a score indicating how
much a customer will "’like” the recommended item [15].

The input file has the structure (customer: item: score), where
the customer gives a recommendation score for an item. We use
the same structure, but we adapt it to our problem. Hence the input
file has the structure (topicl: topic2: number of co-occurrence).
Recommenders use numeric score to rank topics. For example, a
score of 0.64 means that there is 64% shared relevance between
the two topics. The score is constructed based on the number of
occurrences of the two topics in the same segment.

The idea for this version of our method is that instead of con-
sidering the topics of the top 10 segments directly as in the first
version, we take only half of these topics (the best ones) and apply
the recommendation algorithm. For each of these topics, it recom-
mends a topic that has the highest probability of appearing with the
given topic. Table 1 shows that this version improves the results of
our first version (see the third column, named Lucene/Recommender).



IDENTIFYING MULTIPLE TOPICS IN TEXTS 41
8 NOUN PHRASES

Until now, we compared the segments. We used the classes of
the segments that are similar to the new segment to classify it. In
the case of multi-label classification, a text is assigned to several
classes because it covers several topics. When a text is similar to
another text, this does not mean that both texts discuss exactly the
same topics. We want to exclude topics that are not covered in both
texts and to keep only the topics that they have in common.

Any given segment is composed of multiple phrases such as
noun phrases, verb phrases, etc. These phrases can be used to rep-
resent the corresponding segments. Within a specific domain, a
phrase usually has very specific meaning. Single words can be have
several meanings (they can be ambiguous), but a phrase is usually
less ambiguous. A new segment might contain some of the phrases
learned from the training data. Hence, based on the meaning of
these phrases, the system can provide more accurate tags.

By extracting important noun phrases from a text, the mean-
ing can be deducted. Within a specific domain, a noun phrase has
limited meaning (usually one meaning). Phrases tend to be more
specific than words. To understand a text, we extract the best noun
phrases; each noun phrase has metadata which contains a validated
meaning and context from previous learning. Hence, we can un-
derstand the meaning of the paragraphs.

Most of the meaningful noun phrases are between 2 to 3 words
long, without stopwords. We use the part of speech tagger (POS)
of the OpenNLP java library> to extract nouns phrases (NPs). For
all these NPs, we eliminate the stopwords and apply the WordNet
lemmatizer. Instead of indexing the entire text in Lucene (as for
version 1 and 2), we index the NP separately. The learning process
in this version goes through two steps.

First, for each NP extracted from a segment, we assign all
its classes. We index all the NPs with their respective classes in
Lucene. Second, to find the meaning of the NP (its class), we look

3 https://opennlp.apache.org/documentation/manual/opennlp.html



42 M. MOUINE, D. INKPEN, P.-O. CHARLEBOIS, T. HO

Table 1. Classifier results

Method P R F

Lucene 0.59 0.81 0.69
Lucene/Recommender 0.63 0.79 0.70
NP 0.75 0.81 0.78

for NPs that are repeated more than once in the corpus. We only
consider the classes that come back each time to the same NP (in-
tersection).

Finally, we re-index all NPs (without repetition) with the new
classes assigned to each NP. To classify a new segment, we use the
same process. We extract all the NPs, we eliminate stopwords and
we look for the base form of each word using the morphological
analyser. We keep only the NPs composed of 2 to 3 words. For
each NP kept, we looking into the corpus for the most similar NP.
Classes indexed with the most similar NP are attributed to the NP
of the new segment. The classes that are final result for the clas-
sification of the new segment are the set of classes allocated to its
NPs. This version of our method works well for complex text cov-
ering several topics. This version obtained the best results (see the
last column in the Table 1) .

9 CONCLUSION AND FUTURE WORK

In this paper, we proposed three variants of an innovative approach
for multi-label text classification. We used Lucene to index textual
data and metadata. We computed the similarity of a new text to
all indexed documents. We used the classes of the best results to
classify new texts. Depending on the nature of the corpus, we can
use one of three versions of our method. If the text is quite simple
and the number of classes is not high, one of the first two versions
would be more appropriate. If the text is more complicated and we
have a fairly high number of classes for each text, the third version
should lead to better results.



IDENTIFYING MULTIPLE TOPICS IN TEXTS 43

In this work, we relied on an annotated corpus. Such a corpus

is not always available. Annotating a corpus in the same manner as
the one we used in this work is a time-consuming task. In future
work, we propose to develop methods to help human experts to
annotate a corpus based on the discussed topics. We believe that
a method of automatically-extracting keywords could be used to
help with this.

REFERENCES

10.

12.
13.

. Tsoumakas, G., Katakis, I.: Multi-label classification: An overview. Dept.

of Informatics, Aristotle University of Thessaloniki, Greece (2006)
Aggarwal, C.C., Zhai, C.: A survey of text classification algorithms. In:
Mining text data. Springer (2012) 163-222

Carvalho, V.R., Cohen, W.W.: On the collective classification of email
speech acts. In: Proceedings of the 28th annual international ACM SI-
GIR conference on Research and development in information retrieval, ACM
(2005) 345-352

Cohen, W.W.: Learning rules that classify e-mail. In: AAAI spring sym-
posium on machine learning in information access. Volume 18., California
(1996) 25

Chakrabarti, S., Dom, B., Agrawal, R., Raghavan, P.: Using taxonomy, dis-
criminants, and signatures for navigating in text databases. In: VLDB. Vol-
ume 97. (1997) 446-455

Liu, B., Zhang, L.: A survey of opinion mining and sentiment analysis. In:
Mining text data. Springer (2012) 415-463

Lang, K.: Newsweeder: Learning to filter netnews. In: Proceedings of the
12th international conference on machine learning. (1995) 331-339
Srivastava, A., Han, E.H., Kumar, V., Singh, V.: Parallel formulations of
decision-tree classification algorithms. Springer (2002)

Jordan, A.: On discriminative vs. generative classifiers: A comparison of lo-
gistic regression and naive bayes. Advances in neural information processing
systems 14 (2002) 841

Gopal, S., Yang, Y.: Multilabel classification with meta-level features. In:
Proceedings of the 33rd international ACM SIGIR conference on Research
and development in information retrieval, ACM (2010) 315-322

. Hirsch, L., Hirsch, R., Saeedi, M.: Evolving lucene search queries for text

classification. In: Proceedings of the 9th annual conference on Genetic and
evolutionary computation, ACM (2007) 1604-1611

Gospodnetic, O., Hatcher, E.: Lucene in Action. Manning (2005)

Porter, M.F.: An algorithm for suffix stripping. Program 14(3) (1980) 130-
137



44 M. MOUINE, D. INKPEN, P.-O. CHARLEBOIS, T. HO

14. Porter, M.E. Snowball: A language for stemming algorithms.
http://snowball.tartarus.org/texts/introduction.html (2001)

15. Owen, S., Anil, R., Dunning, T., Friedman, E.: Mahout in action. Manning
Shelter Island (2011)

MOHAMED MOUINE

UNIVERSITY OF OTTAWA

800, KING EDWARD STREET, OTTAWA, ON, KIN 6NS5,
CANADA

E-MAIL: <MMOUINE @ UOTTAWA.CA>

DIANA INKPEN

UNIVERSITY OF OTTAWA

800, KING EDWARD STREET, OTTAWA, ON, KIN 6NS5,
CANADA

E-MAIL: <DIANA.INKPEN @ UOTTAWA.CA>

PIERRE-OLIVIER CHARLEBOIS

REDoOCK INC.

5369 CANOTEK RD #3, OTTAWA, ON, K1J 9J3, CANADA
E-MAIL: <POCHARLEBOIS @ REDOCK.COM>

TRI HO

REDoOCK INC.

5369 CANOTEK RD #3, OTTAWA, ON, K1J 9J3, CANADA
E-MAIL: <THO @REDOCK.COM>



