
International Journal of Computational Linguistics and Applications vol. 7, no. 2, 2016, pp. 11–27
Received 08/02/2016, accepted 04/03/2016, final 21/09/2016

ISSN 0976-0962, http://ijcla.bahripublications.com

Dependency-Based Sentence Simplification
for Large-Scale LFG Parsing:

Selecting Simplified Candidates
for Efficiency and Coverage

ILNAR SALIMZIANOV AND ÖZLEM ÇETINOĞLU

University of Stuttgart, Germany

ABSTRACT

Large scale LFG grammars achieve high coverages on corpus
data, yet can fail to give a full analysis for each sentence. One ap-
proach proposed to gain at least the argument structure of those
failed sentences is to simplify them by deleting subtrees from their
dependency structure (provided by a more robust statistical de-
pendency parser). The simplified versions are then re-parsed to
receive a full analysis. However, the number of simplified sen-
tences this approach generates is infeasible for parsing. As a so-
lution, only a subset of candidates is selected based on a metric.
In this work we apply the so-called parsability metric [1], in-
troduced as an error-mining technique for grammar writing, for
selecting among simplified candidates to be parsed and show that
we improve over the previous results that use sentence length as
the selection metric.

1 INTRODUCTION

Hand-crafted Lexical Functional Grammars (LFGs) can provide
deeper analyses for sentences when they are able to parse them, but
usually are less robust than statistical parsers and cannot give full-
fledged solutions for 100% of sentences. Of course it is possible to

This is a pre-print version of the paper, before proper
formatting and copyediting by the editorial staff.

12 ILNAR SALIMZIANOV AND ÖZLEM ÇETINOĞLU

increase the coverage of an LFG grammar by adding more rules or
by relaxing existing ones. But such modifications are, firstly, labor-
intensive and time-consuming, and secondly, they require a high
level of linguistic expertise. Thirdly, the sentences to be parsed
could be in non-standard orthography or grammar. Hence we would
prefer an automatic way of dealing with sentences an LFG gram-
mar failed to parse. This paper is on one of the ways to deal with
such sentences, namely on dependency-based sentence simplifica-
tion.

Figure 1 illustrates a sentence in German from the TIGER cor-
pus [2] German ParGram grammar failed to fully parse1. The prob-
lem with the sentence is that the article des ‘of the’ and the ad-
jective japanischen ‘Japanese’ are both in genitive case, indicat-
ing that that they are part of a genitive construction, but the noun
Außenministerium ‘foreign ministry’ is in nominative case and there-
fore does not agree with the surrounding words. Because of that the
German ParGram grammar outputs only a fragmented analysis for
the sentence as shown in Figure 2.

Fragmented analysis is what XLE2 delivers when it cannot pro-
duce a complete parse. That is, no rule would allow connecting the
fragments found. This is not enough for our research purposes, in
part because fragments identified are often incorrect. E.g., as Fig-
ure 2 shows, the problematic phrase des japanischen Außenminis-
terium ended up in two separate phrases. The functional structure3

is similarly affected and des japanischen does not modify the noun
Außenministerium as it would normally do. Thus, sentences with
fragments are lost in terms of getting information from the analy-
ses.

1 The example was taken from [3].
2 XLE [4] is a framework for parsing and generating with an LFG grammar.
3 LFG theory [5] distinguishes between two core syntactic structures – c-

structure (constituent structure) and f-structure (functional structure). C-
structures are constituent or phrase structure trees. F-structures are sets of
attribute-value pairs; attributes may be features, such as tense or gender, or
functions, such as subject or object.

DEPENDENCY-BASED SENTENCE SIMPLIFICATION 13

(1) Ein
A

Sprecher
speaker

des
of the

japanischen
japanese

Außenministerium
foreign ministry

verkündete
proclaimed

daraufhin
then

,
,

man
one

werde
would

Jelzins
Yelzin’s

Aussage
statement

“
“

vorsichtig
carefully

analysieren
analyze

”
”

,
,

bevor
before

man
one

sie
it

kommentiere
comment

,
,

aber
but

:
:

‘A speaker of the Japanese foreign ministry then proclaimed that
Yeltsin’s statement would be “ carefully analyzed ” , before comment-
ing on it , but :’

Fig. 1. A sentence which the German ParGram grammar failed to parse. The prob-
lem is in the genitive phrase des japanischen Außenministerium, where the noun
is missing the genitive ending -s and hence does not agree with the article and
adjective in case.

Çetinoğlu et al. [3] propose a dependency-based sentence sim-
plification approach to achive a full parse of a simplified version,
where at least the arguments of the original sentence are kept. Sen-
tences with no full parses are simplified by deleting one or more
subtrees, and each shorter sentence is a candidate to reparse and
get a full analysis. However, reparsing all candidates is not a fea-
sible approach, as the number of candidates gets too high for long
sentences with the combination of multiple subtree options to be
deleted. To overcome this problem, the authors take 10 shortest
simplified sentences as their candidates for full parses. Although
this method proves that for more than half of the cases, the full
analysis for the argument structure of failed parses could be ob-
tained, it has a drawback: the system does not give an opportunity
to longer candidates where the arguments and other constituents
might be kept and parsed into a full analyses. In this work we
keep the argument preservation criterion and we propose a more
informed metric to select the candidates that lead to higher cover-
ages with longer simplified sentences.

A few words have to be said on what we mean by coverage.
Original sentence is considered “covered” if at least one of its sim-
plified variants receives a full parse. However, our aim is not to

14 ILNAR SALIMZIANOV AND ÖZLEM ÇETINOĞLU

Fig.2.T
he

c-structure
G

erm
an

ParG
ram

G
ram

m
arprovides

forthe
sentence

in
Figure

1
(to

focus
on

the
problem

atic
partw

e
only

show
partofthe

tree)

DEPENDENCY-BASED SENTENCE SIMPLIFICATION 15

get a full parse for just any of the simplified candidates, but for
candidates that are as long as possible.

The remainder of the paper proceeds as follows. In section 2
we describe in more detail the dependency-based sentence simpli-
fication, as proposed by [3] and the problem with a number of can-
didates infeasible for parsing this approach generates. In section 3
we define the parsability metric which will be used for selecting
candidates likely to receive a parse. In section 4 we describe the
experiments we conducted. We discuss the experimental results in
section 5 and give a short overview of other methods for increas-
ing the coverage of LFG grammars in section 6. We conclude with
section 7

2 DEPENDENCY-BASED SENTENCE SIMPLIFICATION

The idea of dependency-based sentence simplification is as fol-
lows: sentences which LFG parser failed to fully parse are parsed
with a more robust statistical dependency parser. Having a depen-
dency tree for the sentence allows to identify subtrees which are
considered to be deletable. A subtree is defined to be deletable if
removing it would not lead to a change in the arguments structure.
For instance, subjects are not deleteble, whereas adjuncts are. The
list of deletable subtrees is prepared manually based on heuristics,
the actual list is language and treebank dependent. Once the sub-
trees are deleted from the dependency tree, the shorter candidates
are reparsed with the LFG parser.

Figure 3 shows a part of the dependency parse tree for the sen-
tence in Figure 1. Despite the mistake on the noun Außenminis-
terium, des and japanischen correctly modifiy the noun as noun
kernels (NK) and the whole phrase is identified as the genitive ad-
junct (AG) of the noun Sprecher ‘speaker’.

The way the deletion of subtrees works is the following: if the
edge label of the node is in the list of deletable labels, then the node
itself and all its descendants are deleted from the tree. Edge labels
of the heads of deletable subtrees for German are shown in Table

16 ILNAR SALIMZIANOV AND ÖZLEM ÇETINOĞLU

Fig. 3. Part of the dependency tree for the sentence in Figure 1. The tagset from
the TIGER Corpus [2] is used as the edge labels.

1. So, for the parse tree shown in Figure 3, the following subtrees
would be deletable: japanischen and des japanischen Außenminis-
terium.

A careful reader might have noticed that the subtree covering
the word des ‘of the’ was not deleted from the tree although its
edge label – NK – is in the list. This is because the edge label NK
is subject to additional conditions for being deleted, namely it is
deletable only when it functions as an adjunct (see Figure 4 for the
implementation).

If all possible combinations of deletable subtrees are deleted
from the original sentence, the number of generated candidates
is infeasible for parsing. Çetinoğlu et al. [3] report it to reach up
to 608255 candidates per sentence while the average number is
924. The authors address this problem in two ways. In the first ap-
proach, they delete only one subtree at a time from the sentence
(‘one subtree shorter’). In the second approach, all possible com-
binations of subtrees are deleted, and only 10 shortest candidates
plus the shortest candidate without punctuation symbols are taken
(‘ten shortest’).

3 PARSABILITY METRIC

Parsing one subtree shorter or ten shortest candidates improves the
coverage of fully parsed candidates. However, it does not give a
chance to longer hence more informative candidates that would
also receive full parses.

DEPENDENCY-BASED SENTENCE SIMPLIFICATION 17

Table 1. Edge labels of the heads of deletable subtrees. Tags are the tags used in
the TIGER corpus [2].

AG genitive adjuncts
APP appositions
JU discourse-marker like
MNR PP adjuncts (in noun-phrases)
MO modifiers
NG negation
PAR head of parenthesis
PG possessive PP adjuncts
PH placeholders (e.g. German Vorfeld es)
PNC proper noun components
RC relative clauses
RE infinite clauses attached to nominals
SBP PP subjects in passive
UC inside foreign language phrases
VO vocatives
NK noun kernels
DA datives

It is easier to see the reason why this is the case when 10 short-
est candidates are taken compared to the ‘one subtree shorter’ set-
ting. In the latter case we are deleting at most one subtree to pro-
duce the candidate, and we might think that candidates produced
would be longest possible. However, subtrees can yield n-grams of
different length (and we measure length of sentences in terms of
tokens) or two or more subtrees may yield n-grams of the same
length. Maybe there are longer sentences which would also receive
a full parse or two or more candidates of equal length with one
being more likely to receive a full parse than the other(s)?

This work is about exploring metrics other than the length to
select simplified candidates to be parsed. For this purpose, we use
van Noord’s parsability metric[1]. Van Noord used the metric for
the purposes of error detection in grammar writing. In one of their
experiments, [3] use the metric to identify and then delete least
parsable n-grams from problematic sentences. Nonetheless, that is

18 ILNAR SALIMZIANOV AND ÖZLEM ÇETINOĞLU

Function 1: Produce True if the token (read: the node) is the head of a
deletable subtree.

Token Sentence -> Boolean
def head_of_deletable_subtree(t, s):

"""
Produce True if token is the head of
a deletable subtree of the sentence.
"""
if t.deprel in DELETABLE_SUBTREES:

if t.deprel == ’NK’:
if t.pos in [’ADJA’, ’ADJD’, ’ADV’, ’KOUS’]:

return True
elif t.pos == ’NN’ and \

s[int(t.head) - 1].pos == ’NN’:
return True

else:
return False

else:
return True

else:
return False

Fig. 4. A function (in Python 3) for deciding whether the node is the head of a
deletable subtree

not the best way to simplify sentences since deleting n-grams only
according to their parsability does not guarantee the grammatical-
ity of the remaining sentence or preservation of the core arguments.

Parsability score of an n-gram is defined as follows:

parsability(n-gram) =
count(n-gram occurs in parsed sentences)
count(n-gram occurs in *all* sentences)

We prioritize the removal of subtrees with zero or very low
parsability scores to narrow down the candidate space.

The parsability score table we work with contains scores for 1,
2 or 3-grams, but no longer than that. If the subtree yields an n-
gram longer than 3 tokens, or there are no scores for that particular
n-gram in the table, we take the minimum of the parsability scores
of lower order n-grams it contains. If there is no score for 1-gram

DEPENDENCY-BASED SENTENCE SIMPLIFICATION 19

in the parsability table, we set its parsability score to 1.0. Here is
how parsability score of an n-gram is defined formally:

if ngram in ParsabilityTable:
score = ParsabilityTable[ngram]

elif len(ngram) == 1:
score = 1.0

else:
min(scores of n-1-grams ngram contains)

In other words, the algorithm deletes subtrees for which no
parsability score is known latest, if at all.

We hypothesize that by deleting least parsable subtrees first we
can recover a number of sentences comparable to that reported by
[3] while finding longer solutions.

4 EXPERIMENTAL SETUP

In this section we first give the data and tools we use in our exper-
iments and then continue with the description of different experi-
ments we conducted.

4.1 General Setup

We use TIGER treebank [2] as the source of German sentences
which German LFG parser fails to parse but for which a gold stan-
dard dependency tree is available. We use the dependency version
of the TIGER treebank which was converted by [6].

The number of failed sentences is 9160. We use the same ver-
sion used in [3] of the German ParGram grammar[7]. Although
the dataset and grammar versions are the same, the number of sen-
tences XLE fails to parse fully is 9373 in [3]. Our reasoning is
that either the newer version of XLE we used in these experiments
brought improvements which lead to a higher coverage or the hard-
ware (e.g. memory size) that experiments ran on played a role.

20 ILNAR SALIMZIANOV AND ÖZLEM ÇETINOĞLU

For a fair comparison between previous and new approaches,
we start the next section by reproducing the experiments from [3].
The reconducted experiments serve as baseline numbers for our
setting.

4.2 Reproducing the Results of (Çetinoğlu et al., 2013)

ONE SUBTREE SHORTER In the first experiment, only one deletable
subtree at a time is deleted from the original sentence. The number
of possible candidates equals the number of deletable subtrees in
the original sentence.

10 SHORTEST + SHORTESTNOPUNCT Sometimes the problem
which prevents the sentence from being parsed involves several
subtrees. To account for that, in this experiment we delete all possi-
ble combinations of subtrees from the sentence and then take the 10
shortest candidates. From the shortest candidate, we remove punc-
tuation symbols and include the result as the eleventh candidate.

4.3 New Experiments

10 LONGEST + LONGESTNOPUNCT Following our goal of find-
ing parses for sentences as long as possible, we take 10 longest
candidates out of the set of all possible candidates. The longest
candidate without punctuation symbols is included as the eleventh
candidate.

The motivation for this experiment is twofold. First, we would
like to see how naively taking longest candidates without apply-
ing the parsability metric for selecting candidates affects cover-
age. Second, intuitively, taking longest candidates should lead to
longest solutions. This experiment is an intuitive upper bound for
the average length of successfully parsed candidates.

10 WITHOUT LEAST PARSABLE SUBTREES + FIRSTNOPUNCT

In this experiment, up to ten (depending on how many deletable

DEPENDENCY-BASED SENTENCE SIMPLIFICATION 21

subtrees there are in the original sentence) subtrees are deleted,
starting with least parsable ones. Punctuation symbols are removed
from the first candidate, and this version is included as the eleventh
candidate.

We delete punctuation symbols from one of the candidates be-
cause we think that sometimes they can cause the parser to fail to
parse a sentence. Punctuation symbols are deleted from the first
candidate generated. In the ‘10 Shortest + ShortestNoPunct’ and
‘10 Longest + LongestNoPunct’ experiments these are the shortest
and the longest candidates, respectively. In the ‘10 Without Least
Parsable Subtrees + FirstNoPunct’ experiment, this is the sentence
after deleting the least parsable subtree from it.

The reason for deleting the punctuation symbols from the first
candidate was initially mere technical, but the result lines up with
the motivation behind experiments. ‘10 Shortest + ShortestNoP-
unct’ can be seen as the pessimistic approach – we start with the
shortest candidate possible, which we get by deleting punctuation
from the shortest candidate. In the ‘10 Longest + LongestNoPunct’
experiment, our goal is to preserve as much information as possi-
ble, and punctuation, putting examples like “A woman, without her
man, is nothing” vs “A woman: without her, man is nothing” aside,
arguably contains least amount of information. In the ‘10 Without
Least Parsable Subtrees + FirstNoPunct’ the motivation is again to
preserve as much information as possible and therefore it is a good
idea to start by deleting punctuation.

However, deleting punctuation symbols always from the short-
est candidate might have been a better approach.

5 EXPERIMENTAL RESULTS

Table 2 presents results for all experiments and some of their com-
binations. In the second column of it, coverage results are shown.
By coverage we mean receiving a full parse after simplification.
In addition, the average length of fully parsed simplified sentences
(FPSS), calculated by count(tokens in FPSS) / count(FPSS) and the

22 ILNAR SALIMZIANOV AND ÖZLEM ÇETINOĞLU

average number of candidates explored before a solution is found
are given.

Note that since count(FPSS) is different for each of the exper-
iments (the number in the second column of Table 2), experiments
are not strictly comparable against each other in terms of of the
average length of solutions they generate. In particular, the ‘One-
SubtreeShorter’ experiment led to solutions on average longer than
the ‘10Longest + LongestNoPunct’ experiment. This is because
the ‘OneSubtreeShorter’ experiment found solutions for more in-
put sentences than ‘10Longest + LongestNoPunct’ setting did, and
thus we are calculating the average length of two different sets
of sentences. If we consider only the input sentences which re-
ceived a solution in both of the approaches, then the average length
of fully parsed sentences in ‘OneSubtreeShorter’ is 17.46, and in
‘10Longest + LongestNoPunct’ it is 19.16 tokens.

When evaluating effectiveness of a combination of two ap-
proaches, if two solutions were found, only the longest solution
was considered.

Table 2. Number of original sentences which are fully parsed after simplifica-
tion, average length of fully parsed simplified sentences and average number of
candidates explored before the first full parse is found

Experiment
Sent. parsed

after
simplification

Avg. length of
fully parsed

simplified sent.
(tokens)

Avg. # of
candidates

explored

1 OneSubtreeShorter 4188 (45.72%) 18.09 4.87

2 10Shortest +
ShortestNoPunct

4714 (51.46%) 7.50 4.82

3 Combination of 1 and 2 5265 (57.48%) 15.52 –

4 10Longest +
LongestNoPunct

3548 (38.73%) 17.89 6.39

5 Combination of 1 and 4 4657 (50.84%) 18.48 –

6
10WithoutLeast-
Parsable +
FirstNoPunct

4490 (49.02%) 16.35 5.83

7 Combination of 1 and 6 4648 (50.74%) 17.20 –

DEPENDENCY-BASED SENTENCE SIMPLIFICATION 23

The parsability metric proposed by [1] as the error mining tech-
nique for hand-coded grammars proves to be useful for selecting
among simplified versions of a sentence to be parsed.

– So far, taking 10 shortest candidates from the set of candidates
which can be generated by deleting all possible combinations
of subtrees (experiment 2) allowed to recover the highest num-
ber of original sentences (51.46%),

– while taking the combination of 10 longest and one subtree
shorter (experiment 5) on average expectedly led to longest so-
lutions.

– Deleting 10 subtrees yielding least parsable n-grams in a greedy
manner (experiment 6) delivers solutions comparable in length
to that obtained by considering 10 longest candidates per each
sentence (experiment 4), but allows to re-parse almost as many
sentences as in the ‘10 shortest’ setting (experiment 2).

6 RELATED WORK

Several other researchers have worked on achieving high coverage
scores with LFG grammars. For English, Riezler et al. [8] report a
full coverage on the Wall Street Journal, by including fragmented
and skimmed analyses in the results. For German, Rohrer et al.
[7] employ the same techniques and parse the TIGER Treebank.
Additionally they modify the German ParGram Grammar to bet-
ter handle troublesome phenomena such as coordination, subject
gaps, reported speech clauses, and parentheticals. Dost and King
[9] go beyond the standard treebank sentences to test the robust-
ness and coverage of the ParGram English Grammar. They choose
Wikipedia articles as their test medium to discover lexical and syn-
tactic shortcomings, and use their findings for improving the gram-
mar coverage.

Cahill et al. [10] guarantee a high coverage by using a statisti-
cal constituency parser to obtain the c-structure of a sentence, and
then annotating the nodes of the c-structure with f-structure con-
strains and applying a constraint solver. Despite that the c-structure

24 ILNAR SALIMZIANOV AND ÖZLEM ÇETINOĞLU

coverage is 100% thanks to the robust statistical parser, not all sen-
tences can have an f-structure due to the constraint solver. More-
over f-structure outputs carry much less information than usual
ParGram grammar outputs. Hautli et al. [11] close this gap by en-
riching f-structures, yet cannot achieve a full coverage.

Although sentence simplification is not commonly used in LFG
grammars for coverage purposes, there has been research on sen-
tence simplification itself. Riezler et al. [12] employ transfer rules
to simplify English computer news articles, paying attention to
meaning preservation. They apply transfer rules to parsed f-structures
and obtain reduced versions. The reduced f-structures are then dis-
ambiguated and passed into the generator to get shorter versions.
The transfer rules used in this system are described in more detail
in [13].

The most similar work to ours is a recent paper from [14],
where authors rely on dependency relations obtained from an in-
dependent data-driven dependency parser to compose fragment f-
structures for parsable parts of Polish sentences into a full f-structure.
This approach is not applicable to us as the fragment f-structures
might be incorrect themselves in the German ParGram Grammar,
as discussed in section 1 and shown in Figure 1 (although on the
figure you see the c-structure for the sentence, not the f-structure,
f-structure is affected in a similar way). However, authors claim
that “in contrast to English, where partial parsing is used to parse
incorrect sentences, Polish sentences with FRAGMENT parses are
not necessarily incorrect” and that “many of them are well-formed
but contain linguistic phenomena for which POLFIE4 rules have
not been defined yet”. One might argue that such cases where frag-
ments themselves are wrong are indeed infrequent.

7 CONCLUSION AND FUTURE WORK

In this work we make use of a metric in selecting better candidates
to be parsed in a sentence simplification system that aims to in-

4 Polish LFG grammar.

DEPENDENCY-BASED SENTENCE SIMPLIFICATION 25

crease the number of sentences that have a full LFG analysis. We
use the German ParGram Grammar to parse sentences from the
TIGER corpus and fail to get a complete analyses in 19.44% of the
cases. In order to get the analyses of the core arguments of the sen-
tences, we simplify them and parse the shorter sentences. To decide
what constituents to retain and what to delete during simplification
we utilize dependency parses. We define deletable subtrees, that is
subtrees that would not be part of the core arguments of a sentence,
and delete one or more of them to generate shorter candidates.

The combination of multiple deletions lead to high number of
candidates, making the task infeasible for parsing. To overcome
this problem we select a subset of candidates to be parsed. We
first repeat the experiments from [3] as our baseline (‘OneSub-
treeShorter’ and ‘10Shortest + ShortestNoPunct’ in Table 2) and
then suggest the use of the parsability metric (‘10WithoutLeast-
Parsable’), which gives us an on par coverage, with more than dou-
ble the average length of fully-parsed candidates. It shows that with
a more informed metric, it is possible to get more complete analy-
ses out of sentences that failed to have a full parse in their original
form.

The work presented can be extended in several ways. Firstly,
the problem of searching for a simplified candidate can be phrased
as a learning problem. Secondly, we would like to make the pro-
gram learn to paraphrase subtrees (including core parts of a sen-
tence) before or instead of deleting them. Thirdly, a factorized rep-
resentation for sentences so that subtrees causing problems can be
identified and candidates containing them pruned might be a good
idea. Finally, it is yet to be seen whether taking shortest possible
candidates is an upper bound for what can be recovered after sim-
plification/paraphrasing.

The source code and data are publicly available for research
purposes. The project repository can be found at the following ad-
dress: https://gitlab.com/selimcan/DBSS.

https://gitlab.com/selimcan/DBSS

26 ILNAR SALIMZIANOV AND ÖZLEM ÇETINOĞLU

ACKNOWLEDGMENTS This research was funded by the German
Research Foundation (DFG) grant SFB 732 “Incremental Specifi-
cation in Context”, project D2.

REFERENCES

1. van Noord, G.: Error mining for wide-coverage grammar engineering. In
Scott, D., Daelemans, W., Walker, M.A., eds.: Proceedings of the 42nd An-
nual Meeting of the Association for Computational Linguistics, 21-26 July,
2004, Barcelona, Spain., ACL (2004) 446–453

2. Brants, S., Dipper, S., Eisenberg, P., Hansen-Schirra, S., König, E., Lezius,
W., Rohrer, C., Smith, G., Uszkoreit, H.: TIGER: Linguistic interpretation
of a German corpus. Research on Language and Computation 2(4) (2004)
597–620

3. Çetinoğlu, Ö., Zarrieß, S., Kuhn, J.: Dependency-based sentence simplifi-
cation for increasing deep LFG parsing coverage. In: Proceedings of the
LFG13 Conference. (2013) 191–211

4. Maxwell, J., Kaplan, R.: An efficient parser for LFG. In: Proceedings of
LFG. Volume 96. (1996) 131

5. Bresnan, J., Asudeh, A., Toivonen, I., Wechsler, S.: Lexical-functional syn-
tax. Volume 16. John Wiley & Sons (2015)

6. Seeker, W., Kuhn, J.: Making ellipses explicit in dependency conversion
for a German treebank. In Calzolari, N., Choukri, K., Declerck, T., Dogan,
M.U., Maegaard, B., Mariani, J., Odijk, J., Piperidis, S., eds.: Proceedings
of the Eighth International Conference on Language Resources and Evalu-
ation, LREC 2012, Istanbul, Turkey, May 23-25, 2012, European Language
Resources Association (ELRA) (2012) 3132–3139

7. Rohrer, C., Forst, M.: Improving coverage and parsing quality of a large-
scale LFG for German. In: Proceedings of the 2006 Language Resources
and Evaluation Conference. (2006)

8. Riezler, S., King, T.H., Kaplan, R.M., Crouch, R.S., III, J.T.M., Johnson,
M.: Parsing the Wall Street Journal using a lexical-functional grammar and
discriminative estimation techniques. In: Proceedings of the 40th Annual
Meeting of the Association for Computational Linguistics, July 6-12, 2002,
Philadelphia, PA, USA., ACL (2002) 271–278

9. Dost, A., King, T.H.: Using large-scale parser output to guide grammar de-
velopment. In: Proceedings of the 2009 Workshop on Grammar Engineering
Across Frameworks, Association for Computational Linguistics (2009) 63–
70

10. Cahill, A., Burke, M., O’Donovan, R., van Genabith, J., Way, A.: Long-
distance dependency resolution in automatically acquired wide-coverage
PCFG-based LFG approximations. In Scott, D., Daelemans, W., Walker,

DEPENDENCY-BASED SENTENCE SIMPLIFICATION 27

M.A., eds.: Proceedings of the 42nd Annual Meeting of the Association for
Computational Linguistics, 21-26 July, 2004, Barcelona, Spain., ACL (2004)
319–326

11. Hautli, A., Çetinoglu, Ö., van Genabith, J.: Closing the gap between stochas-
tic and hand-crafted LFG grammars. Proceedings of LFG10 (2010) 270–289

12. Riezler, S., King, T.H., Crouch, R.S., Zaenen, A.: Statistical sentence con-
densation using ambiguity packing and stochastic disambiguation methods
for lexical-functional grammar. In: HLT-NAACL. (2003)

13. Crouch, R., King, T.H., Maxwell III, J.T., Riezler, S., Zaenen, A., Butt, M.:
Exploiting f-structure input for sentence condensation. In: Proceedings of
the LFG04 Conference. (2004) 167–187

14. Przepiórkowski, A., Wróblewska, A.: Supporting LFG parsing with depen-
dency parsing. In: International Workshop on Treebanks and Linguistic The-
ories (TLT14). 168

ILNAR SALIMZIANOV
INSTITUTE FOR NATURAL LANGUAGE PROCESSING,

UNIVERSITY OF STUTTGART,
GERMANY

E-MAIL: <ILNAR.SALIMZIANOV@IMS.UNI-STUTTGART.DE>

ÖZLEM ÇETINOĞLU
INSTITUTE FOR NATURAL LANGUAGE PROCESSING,

UNIVERSITY OF STUTTGART,
GERMANY

E-MAIL: <OZLEM@IMS.UNI-STUTTGART.DE>

	Dependency-Based Sentence Simplification for Large-Scale LFG Parsing: Selecting Simplified Candidates for Efficiency and Coverage

