
International Journal of Computational Linguistics and Applications

vol. 7, no. 1, 2016, pp. 51–65

Received 22/06/2015, accepted 27/07/2015, final 28/09/2015

ISSN 0976-0962, http://ijcla.bahripublications.com

A Micro-Genetic Algorithm for Ontology

Class-Hierarchy Construction

SHINYA FUJIHARA
1
 AND RAFAEL BATRES

2

1 Suzuki Motor Corporation, Japan
2 Tecnologico de Monterrey, Mexico

ABSTRACT
Several methods for ontology development have been proposed.

However, the development of domain ontologies is still carried

out in an ad-hoc manner. This paper explores the use of a micro-

genetic algorithm with a seeding scheme based on hierarchical

clustering for ontology class hierarchy construction. The micro-

genetic algorithm (μGA) is composed of an inner loop and an

outer loop. The inner loop consists of: the evaluation of the fit-

ness of each member of the population; the selection of parent

chromosomes; the generation of a new population by using

crossover and mutation operations; and the separation of the

best-fit individual after convergence. The outer loop consists of

creating a new random population, transferring the best individ-

ual from the inner loop, and restarting the inner loop. The fitness

function is based on the correlation between the pair-wise simi-

larities based on the semantic similarity measure of Wu-Palmer

and those obtained using Internet and the normalized Google

distance (NGD). The proposed approach was tested on the con-

struction of a class hierarchy of machining processes. The re-

sults indicate that accurate class hierarchies can be obtained

and convergence can be achieved fast with little memory to store

the population.

KEYWORDS: ontology construction, class hierarchy, micro-ge-

netic algorithm, normalized Google distance.

This is a pre-print version of the paper, before proper
formatting and copyediting by the editorial staff.

1 Introduction

Ontologies are models based on logic that define knowledge structure in

terms of classes and subclasses of things and their relationships [1]. Sev-

eral methods for ontology development have been proposed. Uschold

and King [2] propose a methodology that consists of identification of the

scope and purpose of ontology, construction of the ontology, evaluation

of the ontology and documentation. The methodology application was

shown in the domain of enterprise modeling called Enterprise Ontology.

Grüninger and Fox [3] emphasized the use of competency questions

to define the requirements as an initial step in the ontology design pro-

cess. They define competency questions as questions that a knowledge-

based system should be able to answer.

Nonetheless, the development of domain ontologies is still carried out

in an ad-hoc manner.

Automatic ontology construction has a relatively short history. Khan

and Luo [4] propose a method for automatic ontology construction from

a set of text documents. The approach assumes that documents that are

similar in content are associated with the same concept in the ontology.

Firstly, documents are hierarchically arranged using a modified version

of the SOTA algorithm [5]. Subsequently, concepts are assigned using

WordNet.

Automatic taxonomy generation is a closely related topic which has

been reviewed by Krishnapuram and Kummamuru [6]. Specifically,

Lawrie et al. [7] propose a graph-theoretic algorithm that generate tax-

onomies according to a language model. Sánchez [8] proposes an itera-

tive algorithm for hierarchy generation based on terms that are discov-

ered from Internet sources. For example, “solid-state pressure sensor” is

found from a search involving “pressure sensor,” which in turn is found

from a search with the keyword “sensor.”

In a previous work, Batres et al. [9] proposed a systematic methodol-

ogy to design ontologies based on Formal Concept Analysis. The result-

ing class hierarchy was evaluated using the Internet search combined

with the normalized Google distance equation which prompted the ques-

tion of whether the class hierarchy could be automatically generated us-

ing that evaluation method. This paper attempts to answer that question

and proposes a micro-genetic-algorithm (μGA) to solve the class-hierar-

chy generation problem.

This paper is structured as follows. Section 2 describes the proposed

methodology. Then, the proposed approach is illustrated with a case

study in Section 3. Finally, Section 3 presents the conclusions and dis-

cussion.

2 Proposed methodology

We propose the micro-genetic algorithm (μGA) shown in Fig. 1.Typi-

cally, μGAs are genetic algorithms with small populations that operate

by restarting the population several times while keeping the very best fit

individual [10]. Thanks to the small populations, convergence can be

achieved faster and less memory is required to store the population. In

the proposed methodology, similar to genetic programming, the solution

is a tree-like representation.

Generally speaking, a genetic algorithm aims at solving an objective

function of the form

 max 𝑓(𝐱) ∀𝒙 ∈ 𝑋 (1)

where X is a set of feasible solutions and 𝑓(𝐱) is an objective function

referred to as fitness. 𝐱 is string called chromosome or individual com-

posed of elements referred to as genes. A genetic algorithm requires a

set of n chromosomes known as population. Each iteration updates a

population using a set of operators to lead the next generation. The al-

gorithm works by increasing the average fitness of the population.

Specifically, the proposed methodology starts with a set of initial

classes, which can be obtained through expert consultation and reviews

of technical and scientific literature. Alternatively, text and data mining

tools can be used to process sources that are stored in an electronic form.

The next step is to generate a random population composed of n class

hierarchies, each having the same root class and containing the same set

of initial classes. Then the methodology uses the normalized Google dis-

tance together with hierarchical clustering to find a good feasible solu-

tion, which is inserted to the initial population. Pairs of initial classes are

used as keyword terms for Internet search and the number of hits is used

for the calculations with the normalized Google distance equation. The

distance values are converted to similarity values and stored for subse-

quent calculations.

 The inner loop in Fig. 1 consists of the evaluation of the fitness of

each member of the population; the selection of parent chromosomes;

the use of crossover and mutation operations to generate a new popula-

tion; and the separation of the best-fit individual after convergence. The

inner loop implements the roulette-wheel scheme [11] for the selection

of the parent chromosomes.

 The outer loop consists of creating a new random population, trans-

ferring the best individual from the inner loop, and restarting the inner

loop. In this paper, each cycle in which the inner loop is restarted is called

an epoch.

In this paper, the stopping criteria of both loops are given by parame-

ters 𝐼𝑛𝑚𝑎𝑥 and 𝑂𝑢𝑡𝑚𝑎𝑥 , which denote the maximum number of itera-

tions of the inner loop and the outer loop, respectively. However, other

stopping criteria can be used.

Fig. 1. Proposed methodology

End

Identify a set of initial classes

Use Internet Search, Normalized Google

Distance and Clustering to generate a good

solution and insert it in the population

Evaluate the fitness of each

member of the population

Use GP operators to generate a

new population

Select the best individual
Stop inner

loop?

Create a new random

population and insert

the best individual

Stop outer

loop?

Begin

Yes

Yes

No

No

Generate a random population

2.1 Solution representation

The solution is encoded as a chromosome that represents the class hi-

erarchy as a tree-like structure. Each gene in the chromosome has an

identifier that represents an initial class. Internally, the gene is a list in

which the initial classes are positioned based on the depth of the hierar-

chy. In the example of Fig. 2, gene 7 represents the position of initial

class 7. In the internal structure of this gene, the uttermost left element

(class_1) represents the root class at depth 1. The second element

(class_2) represents a class at depth of 2 that is connected to the root

class. The third element (class_3) represents a class at depth of 3 that is

connected to class_2 and is the parent class of initial_class_7. As it can

be seen from this figure, an identifier is assigned to each class. It is worth

mentioning that a maximum depth 𝑑𝑚𝑎𝑥 is introduced to control the size

of each initial class hierarchy.

2.2 Seeding strategy

A seeding strategy is employed in order to obtain an initial population

that leads to better solutions. The seeding strategy consists of incorpo-

rating a single good solution to a randomly generated population. The

randomly generated population is a population of class hierarchies, each

of which contains the initial classes, and classes that are inserted at ran-

domly at selected positions.

The single good solution is obtained by the following procedure:

1. First, the Normalized Google Distance (NGD) [12] is applied to

pairwise similarities between all the pairs of initial-classes.

Fig. 2. Chromosome structure. class_1, class_2, and class_3 are newly gen-

erated classes and initial_class_7 is an initial class obtained in a preparatory

step previous to the class hierarchy generation.

1 2 3 4 5 6 7 8 9 10 11 12

/class_1/class_2/class_3/initial_class_7

2. Secondly, hierarchical clustering is applied to the distance data

obtained in 1.

The NGD distance function is described by equation (2).

ji

jiji

ji

tt

tttt
tt

f,fM

ff,f

d

loglogminlog

logloglogmax ,
),(

 (2)

 where f(ti), f(tj) and f(ti, tj) give the number of hits for the terms ti, tj

and (ti, tj) respectively. M is a large number that typically represents the

number of indexed documents in a given Web search engine. This paper

uses the value of M=5.8×108 as reported in [9].

The Web-based similarity is denoted by equation (3).

),(, 1)(
jiji

ttdttv (3)

 where v(ti, tj) is the Web-similarity of terms ti, tj.

2.3 Fitness function

In each solution candidate, we measure the similarity between

two classes using the Wu-Palmer similarity measure [13]:

321

3

21

2
),(

NNN

N
ccsim

WP

 (4)

where N1 and N2 are the number of subclass edges from c1 and c2

to their closest common ancestor. N3 is the number of subclass

edges from the closest common ancestor to the root class in the class

hierarchy.

For 𝑛 initial classes in 𝐶, the Wu-Palmer similarity of each class

𝑐𝑖 ∈ 𝐶 and each other class 𝑐𝑗 ∈ 𝐶, ∀𝑗 = 1⋯𝑛 is evaluated.

Subsequently, the Wu-Palmer similarities of 𝑐𝑖 are tested for

accuracy against the NGD similarities obtained previously for class

𝑐𝑖 ∈ 𝐶 and each other class 𝑐𝑗 ∈ 𝐶, ∀𝑗 = 1⋯𝑛. Testing for accuracy

is quantified through the correlation coefficient 𝑟𝑖.

Finally, the fitness function is given by:

 𝐹 = ∑ 𝑟𝑖
𝑛
𝑖 − 𝛼𝑞 (5)

where 𝛼𝑞 is a term to avoid bloat in which 𝛼 is a penalty weight, and 𝑞

is the number of newly added classes that are not connected to any initial

class.

2.4 Genetic operators

Both mutation and crossover are implemented. Mutation is carried out

by the insert, remove and reconfigure operators, with probabilities

𝑝𝑖𝑛𝑠𝑒𝑟𝑡 , 𝑝𝑟𝑒𝑚𝑜𝑣𝑒, and 𝑝𝑟𝑒𝑐𝑜𝑛𝑓 respectively. The insert operator inserts a

new class between a randomly selected initial class and its parent class

(Fig. 3). The remove operator eliminates a class between the top class

and an initial class (Fig. 4).

Fig. 3. Mutation insert operation. C1, C2, C3 and C4 are initial classes.

C5C4

C3

C1

C2

C4

C3

C1

C2 C5

The reconfigure operator selects an initial class and modifies the sub-

tree that contains this class (Fig. 5).

The algorithm performs a crossover operation with probability

𝑝𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟 ,. In the crossover operation, two parents are selected from the

population to produce two offspring chromosomes (Fig. 6). The crosso-

ver operator chooses one or more initial classes and identifies the sub-

trees located between the chosen initial-classes and the root class in each

parent. Subsequently, the selected subtrees are interchanged.

Fig. 4. Mutation remove operation. C1, C2, C3 and C4 are initial classes.

C5C4

C3

C1

C2

C5C4

C3

C1

C2

Fig. 5. Reconfigure operation. C1, C2, C3 and C4 are initial classes.

C5C4

C3

C1

C2
C5

C4

C3

C1

C2

3 Case study

In this case study, we focus on developing the taxonomy of an ontol-

ogy for machining processes. Machining processes remove material and

modify the surfaces of objects that have usually been produced by other

means. For illustration purposes, the scope is limited to mechanical ma-

chining. In order to identify the initial classes several common textbooks

[14]-[16] and Internet sources were consulted. The initial classes are

listed in the first column of Table 1.

In the calculation of the NGD similarities, the Google Scholar search

engine was employed. In order to restrict the Web search to the domain

of study, keywords were formulated with the inclusion of the term “ma-

chining” and search was carried out using double quotes for each initial

class. For example, for calculating the similarity between counterboring

and spot facing, search with Scholar for “machining” “counterboring”

results in f(counterboring)=1019 hits; search for “machining” “spot fac-

ing” produces f(spot facing)=620 hits; and search for “machining”

“counterboring” “spot facing” results in f(counterboring, spot facing) =

56 hits. Substituting these values in Equation (1) gives d(counterboring,

Fig. 6. Crossover operation. C1, C2, C3 and C4 are initial classes.

C5C4

C3

C1

C2

C1C2

C5

C3C4

C5C4

C3

C1C2

C5

C3C4

C1

C2

spot facing) = 0.2146. Using Equation (2) we obtain v(counterboring,

spot facing) = 0.7854. The good feasible solution was obtained by hier-

archical clustering, using the normalized Google distances. The correla-

tion coefficients for the comparison between the NGD similarities and

the Wu-Palmer similarities for the good feasible solution are shown in

Table 1.

A comparison was made between the proposed μGA and a traditional

genetic algorithm. Both populations consisted of 48 individuals. The ter-

mination criteria was set to a maximum of 4000 generations for the tra-

ditional algorithm. The termination criteria for the inner and outer cycle

of the μGA were set to a maximum of 100 generations and 40 epochs

respectively. The values of these and other parameters used in the exper-

iments are shown in Table 2. The probabilities for all the mutation oper-

ators (insert, remove, and reconfigure) were set to 60%.

Table 3 summarizes the results of running the proposed μGA and the

traditional genetic algorithm. The results show the proposed approach to

be the best algorithm with average performance over ten independent

runs of 9.373 and a best fitness value of 9.883 (12 is the maximum value

that the fitness function can take for this problem). In comparison, the

traditional algorithm produced a class hierarchy with a best fitness value

of 8.952. The computation time of the μGA was also slightly better.

Table 1. Correlation coefficients of the initial classes of the hierarchical-

clustering generated taxonomy.

 Ci ri

In
it

ia
l

cl
as

se
s

reaming 0．547

spot facing 0．594

counterboring 0．394

countersinking 0．458

grinding 0．452

boring 0．577

drilling 0．702

milling 0．568

turning 0．313

tapping 0．566

blasting 0．085

lapping 0．678

 ∑𝑟𝑖

𝑛

𝑖

 5．934

Table 2. Parameters used in the numeric experiments

Parameter μGA
Traditional

GA

Population size 48 48

Iterations of the internal loop 100 4000

Iterations of the external loop 40 –

Maximum depth of the taxon-

omy

12 12

One-point crossover probabil-

ity

60 60

Two-point crossover probabil-

ity

5 5

Mutation probabilities 10 10

Penalty 0．5 0．5

Table 3. Results for both methods

Algorithm

Fitness Average

computa-

tional

time (s)

best
aver-

age

standard

devia-

tion

Traditional

GA

8.952 8.850 0.086 45.0

μGA 9.883 9.373 0.325 41.6

The class hierarchy obtained with the traditional algorithm is shown

in Fig. 7. It can be seen that except reaming, boring, blasting and tapping,

few initial classes share the same direct parent class. We would expect

grinding, milling and turning to be grouped together because the three

machining processes remove materials without requiring the creation of

a hole. In spite of these three classes being subclasses of inserted class 6,

the classes are too much far apart of each other.

The class hierarchy obtained with the proposed approach is shown in

Fig. 8. In this class hierarchy, grinding, milling and turning are grouped

together which is consistent with their definition. In addition, it is inter-

esting to note that machining processes that require a previously created

hole (reaming, boring and tapping, countersinking, counterboring and

spotfacing) are grouped together as subclasses of class 3.

Reaming, boring and tapping which are all direct subclasses of class

3 represent machining processes in which the enlarged portion of the

hole is cylindrical. This is in contrast with countersinking, counterboring

Fig. 7. Class hierarchy obtained with traditional GA.

1 2 3

4

5

6

boring

counterboring

reaming

tapping

countersinking

spotfacing

drilling

blasting

lapping

grinding

milling

turning

7

8

9

10

11
12

and spotfacing all of which are subclasses of class 4 and produce a bot-

tom part of the enlarged portion of the hole which is either: flat and

squared (counterboring and spotfacing) or cone-shaped (countersink-

ing). However, there is no apparent explanation for the grouping of coun-

tersinking and counterboring (subclasses of class 4) separate from spot-

facing (subclass of class 5).

4 Conclusions

A method has been presented that uses a μGA algorithm to generate

ontology class hierarchies. The method is characterized by (1) the

use of a good solution that is seeded into the initial population; (2)

the use of an evaluation method based on the normalized Google

distance and the Wu-Palmer similarity; and (3) the use of small pop-

ulation sizes.

Numeric results show that the proposed method surpasses the tra-

ditional genetic algorithm both in terms of quality of the solution

Fig. 8. Class hierarchy obtained with the proposed methodology.

reaming

boring

tapping

spotfacing

countersinking

counterboring

milling

turning

grinding

drilling

blasting

lapping

1 2 3

4

5

6

and computational effort. In addition to the advantage in conver-

gence speed, less memory is required to store the population. The

class hierarchy also proved to be semantically meaningful when

compared with definitions extracted from the literature.

The proposed methodology inserts classes that are unnamed. One

challenge is to develop a naming mechanism for these classes. However,

the class hierarchies produced with the current methodology can be used

for purposes such as semantic similarity calculations [17].

Acknowledgment The authors are grateful to Dr. Yoshiaki Shimizu for

his valuable discussions and support of this work.

References

1. Batres, R., Akmal, S.: A Formal Concept Analysis-Based Method for De-

veloping Process Ontologies. Journal of Chemical Engineering of Japan,

46(6), 396–406 (2013)

2. Uschold, M., King, M.: Towards a Methodology for Building Ontologies.

IJCAI’95 Workshop on Basic Ontological Issues in Knowledge Sharing,

Montreal, Canada (1995)

3. Gruninger, M., Fox, M.S. Methodology for the Design and Evaluation of

Ontologies. IJCAI’95 Workshop on Basic Ontological Issues in Knowledge

Sharing, Montreal, Canada (1995)

4. Khan, L., Luo, F.: Ontology Construction for Information Selection. Pro-

ceedings of the 14th IEEE International Conference on Tools with Artificial

Intelligence (ICTAI’02) (2002)

5. Dopazo, J., Carazo, J.M.: Phylogenetic reconstruction using an unsuper-

vised growing Neural Network that adopts the topology of a phylogenetic

tree. Journal of Molecular Evolution, 44, 222–233 (1997)

6. Krishnapuram, R., Kummamuru, K.: Automatic taxonomy generation: Is-

sues and possibilities. Fuzzy Sets and SystemsIFSA 2003, 184–184 (2003)

7. Lawrie, D., Croft, W. B, Rosenberg, A.: Finding topic words for hierarchical

summarization. Proceedings of the 24th annual international ACM SIGIR

conference on Research and development in information retrieval, 349–357

(2001)

8. Sánchez, D., Moreno, A.: Automatic Generation of Taxonomies from the

WWW. Practical Aspects of Knowledge Management, Lecture Notes in

Computer Science, Vol. 3336, 208–219 (2004)

9. Batres, R., Akmal, S.: A Methodology for Developing Manufacturing Pro-

cess Ontologies. Journal of Japan Industrial Management Association, 64,

303–316 (2013)

10. Krishnakumar, K.: Microgenetic algorithms for stationary and nonstation-

ary function optimization. Proc. SPIE Vol. 1196, Intelligent Control and

Adaptive Systems, Guillermo Rodriguez, Ed., 289–296 (1989)

11. Goldberg, D.E.: Genetic algorithms in search, optimization, and machine

learning. Addison-Wesley (1989)

12. Cilibrasi, R.L., Vitanyi, P.M.B.: The Google Similarity Distance. IEEE

Trans. Knowledge Data Eng., 19, 370–383 (2007)

13. Wu, Z., Palmer, M.: Verbs semantic and lexical selection. Proceedings of

the 32nd Annual Meeting of the Associations for Computational Linguis-

tics, New Mexico, 133–138 (1994)

14. Nagendra Parashar, B.S., Mittal, R.K.: Elements of Manufacturing Pro-

cesses, Prentice-Hall of India Private Limited (2007)

15. Degarmo, E.P., Black, J.T., Kohser, R.A.: Materials and Processes in Man-

ufacturing, John Wiley & Sons, New York, USA (2010)

16. M.C. Finishing: Blasting Technical Information, http://mcfinishing.com/re-

sources/blastingtech.pdf

17. Akmal, S., Li-Hsing, S., Batres, R.: Ontology-based similarity for product

information retrieval. Computers in Industry, 65(1), 91–107 (2014)

SHINYA FUJIHARA

SUZUKI MOTOR CORPORATION,

TOYOKAWA, JAPAN

E-MAIL: <HUJIHARANE@YAHOO.CO.JP>

RAFAEL BATRES

TECNOLOGICO DE MONTERREY,

CUERNAVACA, MEXICO

E-MAIL: <RAFAEL.BATRES@ITESM.MX>

http://mcfinishing.com/resources/blastingtech.pdf
http://mcfinishing.com/resources/blastingtech.pdf

