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ABSTRACT 
Several methods for ontology development have been proposed. 

However, the development of domain ontologies is still carried 

out in an ad-hoc manner. This paper explores the use of a micro-

genetic algorithm with a seeding scheme based on hierarchical 

clustering for ontology class hierarchy construction. The micro-

genetic algorithm (μGA) is composed of an inner loop and an 

outer loop. The inner loop consists of: the evaluation of the fit-

ness of each member of the population; the selection of parent 

chromosomes; the generation of a new population by using 

crossover and mutation operations; and the separation of the 

best-fit individual after convergence. The outer loop consists of 

creating a new random population, transferring the best individ-

ual from the inner loop, and restarting the inner loop. The fitness 

function is based on the correlation between the pair-wise simi-

larities based on the semantic similarity measure of Wu-Palmer 

and those obtained using Internet and the normalized Google 

distance (NGD). The proposed approach was tested on the con-

struction of a class hierarchy of machining processes. The re-

sults indicate that accurate class hierarchies can be obtained 

and convergence can be achieved fast with little memory to store 

the population. 

KEYWORDS: ontology construction, class hierarchy, micro-ge-

netic algorithm, normalized Google distance. 
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1 Introduction 

Ontologies are models based on logic that define knowledge structure in 

terms of classes and subclasses of things and their relationships [1]. Sev-

eral methods for ontology development have been proposed. Uschold 

and King [2] propose a methodology that consists of identification of the 

scope and purpose of ontology, construction of the ontology, evaluation 

of the ontology and documentation. The methodology application was 

shown in the domain of enterprise modeling called Enterprise Ontology. 

Grüninger and Fox [3] emphasized the use of competency questions 

to define the requirements as an initial step in the ontology design pro-

cess. They define competency questions as questions that a knowledge-

based system should be able to answer. 

Nonetheless, the development of domain ontologies is still carried out 

in an ad-hoc manner. 

Automatic ontology construction has a relatively short history. Khan 

and Luo [4] propose a method for automatic ontology construction from 

a set of text documents. The approach assumes that documents that are 

similar in content are associated with the same concept in the ontology. 

Firstly, documents are hierarchically arranged using a modified version 

of the SOTA algorithm [5]. Subsequently, concepts are assigned using 

WordNet. 

Automatic taxonomy generation is a closely related topic which has 

been reviewed by Krishnapuram and Kummamuru [6]. Specifically, 

Lawrie et al. [7] propose a graph-theoretic algorithm that generate tax-

onomies according to a language model. Sánchez [8] proposes an itera-

tive algorithm for hierarchy generation based on terms that are discov-

ered from Internet sources. For example, “solid-state pressure sensor” is 

found from a search involving “pressure sensor,” which in turn is found 

from a search with the keyword “sensor.” 

In a previous work, Batres et al. [9] proposed a systematic methodol-

ogy to design ontologies based on Formal Concept Analysis. The result-

ing class hierarchy was evaluated using the Internet search combined 

with the normalized Google distance equation which prompted the ques-

tion of whether the class hierarchy could be automatically generated us-

ing that evaluation method. This paper attempts to answer that question 

and proposes a micro-genetic-algorithm (μGA) to solve the class-hierar-

chy generation problem. 

 



This paper is structured as follows. Section 2 describes the proposed 

methodology. Then, the proposed approach is illustrated with a case 

study in Section 3. Finally, Section 3 presents the conclusions and dis-

cussion. 

 

2 Proposed methodology 

We propose the micro-genetic algorithm (μGA) shown in Fig. 1.Typi-

cally, μGAs are genetic algorithms with small populations that operate 

by restarting the population several times while keeping the very best fit 

individual [10]. Thanks to the small populations, convergence can be 

achieved faster and less memory is required to store the population. In 

the proposed methodology, similar to genetic programming, the solution 

is a tree-like representation. 

Generally speaking, a genetic algorithm aims at solving an objective 

function of the form 

 max 𝑓(𝐱)   ∀𝒙 ∈ 𝑋 (1) 

where X is a set of feasible solutions and 𝑓(𝐱) is an objective function 

referred to as fitness. 𝐱 is string called chromosome or individual com-

posed of  elements referred to as genes. A genetic algorithm requires a 

set of n chromosomes known as population. Each iteration updates a 

population using a set of operators to lead the next generation. The al-

gorithm works by increasing the average fitness of the population. 

Specifically, the proposed methodology starts with a set of initial 

classes, which can be obtained through expert consultation and reviews 

of technical and scientific literature. Alternatively, text and data mining 

tools can be used to process sources that are stored in an electronic form. 

The next step is to generate a random population composed of n class 

hierarchies, each having the same root class and containing the same set 

of initial classes. Then the methodology uses the normalized Google dis-

tance together with hierarchical clustering to find a good feasible solu-

tion, which is inserted to the initial population. Pairs of initial classes are 

used as keyword terms for Internet search and the number of hits is used 

for the calculations with the normalized Google distance equation. The 

distance values are converted to similarity values and stored for subse-

quent calculations. 

 



   The inner loop in Fig. 1 consists of the evaluation of the fitness of 

each member of the population; the selection of parent chromosomes; 

the use of crossover and mutation operations to generate a new popula-

tion; and the separation of the best-fit individual after convergence. The 

inner loop implements the roulette-wheel scheme [11] for the selection 

of the parent chromosomes. 

   The outer loop consists of creating a new random population, trans-

ferring the best individual from the inner loop, and restarting the inner 

loop. In this paper, each cycle in which the inner loop is restarted is called 

an epoch. 

 

 

 

 

In this paper, the stopping criteria of both loops are given by parame-

ters 𝐼𝑛𝑚𝑎𝑥  and 𝑂𝑢𝑡𝑚𝑎𝑥 , which denote the maximum number of itera-

tions of the inner loop and the outer loop, respectively. However, other 

stopping criteria can be used. 

Fig. 1. Proposed methodology 
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2.1 Solution representation 

The solution is encoded as a chromosome that represents the class hi-

erarchy as a tree-like structure. Each gene in the chromosome has an 

identifier that represents an initial class. Internally, the gene is a list in 

which the initial classes are positioned based on the depth of the hierar-

chy. In the example of Fig. 2, gene 7 represents the position of initial 

class 7. In the internal structure of this gene, the uttermost left element 

(class_1) represents the root class at depth 1. The second element 

(class_2) represents a class at depth of 2 that is connected to the root 

class. The third element (class_3) represents a class at depth of 3 that is 

connected to class_2 and is the parent class of initial_class_7. As it can 

be seen from this figure, an identifier is assigned to each class. It is worth 

mentioning that a maximum depth 𝑑𝑚𝑎𝑥  is introduced to control the size 

of each initial class hierarchy. 

 

2.2 Seeding strategy 

A seeding strategy is employed in order to obtain an initial population 

that leads to better solutions. The seeding strategy consists of incorpo-

rating a single good solution to a randomly generated population. The 

randomly generated population is a population of class hierarchies, each 

of which contains the initial classes, and classes that are inserted at ran-

domly at selected positions. 

The single good solution is obtained by the following procedure: 

1. First, the Normalized Google Distance (NGD) [12] is applied to 

pairwise similarities between all the pairs of initial-classes. 

 

Fig. 2. Chromosome structure. class_1, class_2, and class_3 are newly gen-

erated classes and initial_class_7 is an initial class obtained in a preparatory 

step previous to the class hierarchy generation. 
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2. Secondly, hierarchical clustering is applied to the distance data 

obtained in 1. 

  

The NGD distance function is described by equation (2). 
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   where f(ti), f(tj) and f(ti, tj) give the number of hits for the terms ti, tj 

and (ti, tj) respectively. M is a large number that typically represents the 

number of indexed documents in a given Web search engine. This paper 

uses the value of M=5.8×108 as reported in [9]. 

The Web-based similarity is denoted by equation (3).  
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   where v(ti, tj) is the Web-similarity of terms ti, tj. 

 

2.3 Fitness function 

In each solution candidate, we measure the similarity between 

two classes using the Wu-Palmer similarity measure [13]: 
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where N1 and N2 are the number of subclass edges from c1  and c2 

to their closest common ancestor. N3 is the number of subclass 

edges from the closest common ancestor to the root class in the class 

hierarchy. 

For 𝑛 initial classes in 𝐶, the Wu-Palmer similarity of each class 

𝑐𝑖 ∈ 𝐶  and each other class 𝑐𝑗 ∈ 𝐶, ∀𝑗 = 1⋯𝑛   is evaluated. 

Subsequently, the Wu-Palmer similarities of 𝑐𝑖  are tested for 

accuracy against the NGD similarities obtained previously for class 

𝑐𝑖 ∈ 𝐶 and each other class 𝑐𝑗 ∈ 𝐶, ∀𝑗 = 1⋯𝑛. Testing for accuracy 

is quantified through the correlation coefficient 𝑟𝑖.  

 



Finally, the fitness function is given by: 

 𝐹 = ∑ 𝑟𝑖
𝑛
𝑖 − 𝛼𝑞 (5) 

where 𝛼𝑞 is a term to avoid bloat in which 𝛼 is a penalty weight, and 𝑞 

is the number of newly added classes that are not connected to any initial 

class. 

2.4 Genetic operators 

Both mutation and crossover are implemented. Mutation is carried out 

by the insert, remove and reconfigure operators, with probabilities 

𝑝𝑖𝑛𝑠𝑒𝑟𝑡 , 𝑝𝑟𝑒𝑚𝑜𝑣𝑒, and 𝑝𝑟𝑒𝑐𝑜𝑛𝑓  respectively. The insert operator inserts a 

new class between a randomly selected initial class and its parent class 

(Fig. 3). The remove operator eliminates a class between the top class 

and an initial class (Fig. 4). 

 

 

 

 

Fig. 3. Mutation insert operation. C1, C2, C3 and C4 are initial classes. 
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The reconfigure operator selects an initial class and modifies the sub-

tree that contains this class (Fig. 5). 

 

 

 

The algorithm performs a crossover operation with probability 

𝑝𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟 ,. In the crossover operation, two parents are selected from the 

population to produce two offspring chromosomes (Fig. 6). The crosso-

ver operator chooses one or more initial classes and identifies the sub-

trees located between the chosen initial-classes and the root class in each 

parent. Subsequently, the selected subtrees are interchanged. 

 

Fig. 4. Mutation remove operation. C1, C2, C3 and C4 are initial classes. 
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Fig. 5. Reconfigure operation. C1, C2, C3 and C4 are initial classes. 
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3 Case study 

In this case study, we focus on developing the taxonomy of an ontol-

ogy for machining processes. Machining processes remove material and 

modify the surfaces of objects that have usually been produced by other 

means. For illustration purposes, the scope is limited to mechanical ma-

chining. In order to identify the initial classes several common textbooks 

[14]-[16] and Internet sources were consulted. The initial classes are 

listed in the first column of Table 1. 

In the calculation of the NGD similarities, the Google Scholar search 

engine was employed. In order to restrict the Web search to the domain 

of study, keywords were formulated with the inclusion of the term “ma-

chining” and search was carried out using double quotes for each initial 

class.  For example, for calculating the similarity between counterboring 

and spot facing, search with Scholar for “machining” “counterboring” 

results in f(counterboring)=1019 hits; search for “machining” “spot fac-

ing” produces f(spot  facing)=620 hits; and search for “machining” 

“counterboring” “spot facing” results in f(counterboring, spot facing) = 

56 hits. Substituting these values in Equation (1) gives d(counterboring, 

 

Fig. 6. Crossover operation. C1, C2, C3 and C4 are initial classes. 
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spot facing) = 0.2146. Using Equation (2) we obtain v(counterboring, 

spot facing) = 0.7854. The good feasible solution was obtained by hier-

archical clustering, using the normalized Google distances. The correla-

tion coefficients for the comparison between the NGD similarities and 

the Wu-Palmer similarities for the good feasible solution are shown in 

Table 1. 

A comparison was made between the proposed μGA and a traditional 

genetic algorithm. Both populations consisted of 48 individuals. The ter-

mination criteria was set to a maximum of 4000 generations for the tra-

ditional algorithm. The termination criteria for the inner and outer cycle 

of the μGA were set to a maximum of 100 generations and 40 epochs 

respectively. The values of these and other parameters used in the exper-

iments are shown in Table 2. The probabilities for all the mutation oper-

ators (insert, remove, and reconfigure) were set to 60%. 

Table 3 summarizes the results of running the proposed μGA and the 

traditional genetic algorithm. The results show the proposed approach to 

be the best algorithm with average performance over ten independent 

runs of 9.373 and a best fitness value of 9.883 (12 is the maximum value 

that the fitness function can take for this problem). In comparison, the 

traditional algorithm produced a class hierarchy with a best fitness value 

of 8.952. The computation time of the μGA was also slightly better. 

 

 

Table 1.  Correlation coefficients of the initial classes of the hierarchical-

clustering generated taxonomy. 
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reaming 0．547 

spot facing 0．594 

counterboring 0．394 

countersinking 0．458 

grinding 0．452 

boring 0．577 

drilling 0．702 

milling 0．568 

turning 0．313 

tapping 0．566 

 



blasting 0．085 

lapping 0．678 

 ∑𝑟𝑖

𝑛

𝑖

 5．934 

 

Table 2. Parameters used in the numeric experiments 

Parameter μGA 
Traditional 

GA 

Population size 48 48 

Iterations of the internal loop 100 4000 

Iterations of the external loop 40 – 

Maximum depth of the taxon-

omy 

12 12 

One-point crossover probabil-

ity 

60 60 

Two-point crossover probabil-

ity 

5 5 

Mutation probabilities 10 10 

Penalty 0．5 0．5 

Table 3. Results for both methods 

Algorithm 

Fitness Average  

computa-

tional  

time (s) 

best 
aver-

age 

standard 

devia-

tion 

Traditional 

GA 

8.952 8.850 0.086 45.0 

μGA 9.883 9.373 0.325 41.6 

 

 



 

The class hierarchy obtained with the traditional algorithm is shown 

in Fig. 7. It can be seen that except reaming, boring, blasting and tapping, 

few initial classes share the same direct parent class. We would expect 

grinding, milling and turning to be grouped together because the three 

machining processes remove materials without requiring the creation of 

a hole. In spite of these three classes being subclasses of inserted class 6, 

the classes are too much far apart of each other. 

The class hierarchy obtained with the proposed approach is shown in 

Fig. 8. In this class hierarchy, grinding, milling and turning are grouped 

together which is consistent with their definition. In addition, it is inter-

esting to note that machining processes that require a previously created 

hole (reaming, boring and tapping, countersinking, counterboring and 

spotfacing) are grouped together as subclasses of class 3.  

Reaming, boring and tapping which are all direct subclasses of class 

3 represent machining processes in which the enlarged portion of the 

hole is cylindrical. This is in contrast with countersinking, counterboring 

 

Fig. 7. Class hierarchy obtained with traditional GA. 
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and spotfacing all of which are subclasses of class 4 and produce a bot-

tom part of the enlarged portion of the hole which is either: flat and 

squared (counterboring and spotfacing) or cone-shaped (countersink-

ing). However, there is no apparent explanation for the grouping of coun-

tersinking and counterboring (subclasses of class 4) separate from spot-

facing (subclass of class 5).  

4 Conclusions 

A method has been presented that uses a μGA algorithm to generate 

ontology class hierarchies. The method is characterized by (1) the 

use of a good solution that is seeded into the initial population; (2) 

the use of an evaluation method based on the normalized Google 

distance and the Wu-Palmer similarity; and (3) the use of small pop-

ulation sizes.  

Numeric results show that the proposed method surpasses the tra-

ditional genetic algorithm both in terms of quality of the solution 

 

Fig. 8. Class hierarchy obtained with the proposed methodology. 
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and computational effort. In addition to the advantage in conver-

gence speed, less memory is required to store the population.  The 

class hierarchy also proved to be semantically meaningful when 

compared with definitions extracted from the literature. 

The proposed methodology inserts classes that are unnamed. One 

challenge is to develop a naming mechanism for these classes. However, 

the class hierarchies produced with the current methodology can be used 

for purposes such as semantic similarity calculations [17].  
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