
IJCLA VOL. 5, NO. 1, JAN-JUN 2014, PP. 27–42
RECEIVED 07/01/14 ACCEPTED 06/02/14 FINAL 16/06/14

Joint word2vec Networks
for Bilingual Semantic Representations

LIOR WOLF, YAIR HANANI, KFIR BAR, AND NACHUM DERSHOWITZ

Tel Aviv University, Israel

ABSTRACT

We extend the word2vec framework to capture meaning across
languages. The input consists of a source text and a word-aligned
parallel text in a second language. The joint word2vec tool then
represents words in both languages within a common “seman-
tic” vector space. The result can be used to enrich lexicons of
under-resourced languages, to identify ambiguities, and to per-
form clustering and classification. Experiments were conducted
on a parallel English-Arabic corpus, as well as on English and
Hebrew Biblical texts.

1 INTRODUCTION

Semantic models of languages map words, or word senses, in the lan-
guage under study to some space in which semantic relationships be-
tween them can be observed and measured. Within such models, one
would expect synonymous words to appear “near” one another. If the
model incorporates more than one language, then the translation of a
word should also reside nearby.

Word2vec [1] is a recently developed technique for building a neural
network that maps words to real-number vectors, with the desideratum
that words with similar meanings will map to similar vectors. One prob-
lem with a straightforward learning scheme from words and their context
is polysemy, since the resultant vector will be an average of the different
senses of the word.



28 L. WOLF, Y. HANANI, K. BAR, N. DERSHOWITZ

Some languages are more ambiguous than others. There are many ho-
mographs in English, fewer in Spanish (a more phonetic language than
English), and many more in (unvocalized) Hebrew. Sometimes homo-
graphs are also homophones, being pronounced the same (e.g., “bank”);
other times they are heteronyms that are distinguished in speech (e.g.,
“dove”). We show how to leverage word-aligned parallel texts to improve
the quality of the inferred model.

In the next section, we provide some background on the use of bilin-
gual models for single-language tasks and to aid in machine transla-
tion. Section 3 contains an explanation of our bilingual extension to the
word2vec model builder. It is followed by a section on experimental re-
sults for word-aligned English-Arabic and English-Hebrew corpora and
then a brief discussion of the implications.

2 BACKGROUND

Word sense disambiguation [2] is a difficult problem, partly because of
the paucity of sense-tagged training data in most languages. Languages
like Arabic and Hebrew pose a bigger challenge because of their un-
vowelized and undiacritized writing. In English and other European lan-
guages, senses are represented, in particular, by WordNet [3]. Although
similar WordNet repositories exist for Arabic [4] and Hebrew [5], they are
quite limited in scope. The only available sense-tagged corpus in Hebrew
is the Bible. For Arabic, there is OntoNotes [6], a relatively large cor-
pus of various genres, tagged for syntax and shallow semantic attributes,
including word senses.

It is well known that there is little agreement between dictionaries as
to the division of words into their senses. Some distinctions are subtle and
often cross language boundaries, so may not be considered distinct senses
by other lexicographers; others are substantive and are unlikely to share
the same words in multiple languages. Accordingly, it has been argued
(e.g., [7–9]) that sense distinctions can be derived from co-occurrence
statistics across languages. To quote [2]: “Homograph distinctions do not
require a lexicographer to locate them, since they are basically those that
can be found easily in parallel texts in different languages”.

In [10], the authors showed how one can train word2vec indepen-
dently in two languages, then use some anchor points between the two
languages (a limited number of corresponding words in the two lan-
guages) to find an affine mapping from one language model to the other.



JOINT WORD2VEC NETWORKS FOR BILINGUAL ... 29

The hope was that the resultant spaces can be used to enrich the dictio-
nary by looking in the model of the second language for the word closest
to the position of a word from the first language.

3 WORD2VEC

Word2vec belongs to the class of methods called “neural language mod-
els”. Using a scheme that is much simpler than previous work in this
domain, where neural networks with many hidden units and several non-
linear layers were normally constructed (e.g., [11]), word2vec [1] con-
structs a simple log-linear classification network [12]. Two such networks
are proposed: the Skip-gram architecture and the Continuous Bag-of-
words (CBOW) architecture. While the Skip-gram architecture is some-
times preferable, in our experience – probably due to the relatively small
corpora we use, the CBOW architecture outperforms it. Therefore, we
limit our exposition to the latter architecture.

3.1 Continuous Bag-of-Words Architecture

In the CBOW variant of word2vec, the network predicts each word based
on its neighborhood – the five words preceding and the five words follow-
ing that word. An input layer denotes the bag of words representation of
the surrounding words, and contains one input element per glossary word.
It is projected linearly to the hidden encoding layer. The hidden layer
in then mapped to an output Huffman code representation of the given
word. Once the network is trained, the projections from each input unit
to the middle encoding layer are used to represent the associated glossary
word. Interestingly, the resulting encoding not only captures meaningful
word representations, where (unambiguous) words of similar meaning
have nearby representations, but also captures, in a surprising manner,
pairwise relations through simple arithmetic operations [1].

Next, we formalize the CBOW architecture and introduce the notation
used throughout the paper. Word2vec models are learned from an input
corpus. Every word that occurs at least three times in the corpus becomes
part of the glossary. Let D be the size of the glossary. The goal of the
word2vec procedure is to associate each of the D glossary words with
a vector representation in RL. In all of our experiments, L is fixed at a
value of 200.

Each training example i is an occurrence of a glossary word w(i) in
the corpus. During the learning phase, the CBOW network is trained to



30 L. WOLF, Y. HANANI, K. BAR, N. DERSHOWITZ

map (through a hidden projection layer of sizeL) binary input vectorsBin
i

of lengthD, to the matching output vectorsBout
i of length lgD. The input

vectors contain one element corresponding to each glossary entry, which
denotes the existence of each glossary entry within the small neighbor-
hood of size 2N surrounding example i in the text. In our experiments
the window-size parameter N is fixed to be 5.

The binary output vector Bout
i = Hw(i) is the Huffman code of the

associated glossary entry. The Huffman codes Hj , j = 1 . . D of length
lgD are constructed by considering the frequency of each glossary en-
try j. The use of Huffman codes follows a common practice in neural
net language models [13]. We adhere to this practice, although its main
advantage over encoding through balanced trees is to reduce evaluation
time through an early stopping mechanism. This consideration is not a
major concern in our system, where D is relatively small.

As mentioned above, the vector representation Vj of each glossary
word, j = 1 . . D, is its projection to the hidden layer; that is, it is the array
of weights used to project the corresponding bit in the input vector Bin to
the hidden layer. Intuitively, it captures the contribution of each glossary
word to a layer that enables a relatively effective way of predicting the
output vector. This is a semantic task, and the representation is therefore
semantic. Also, by design, since linear projections are summed to capture
local neighborhoods, the representation behaves well under addition.

3.2 Bilingual Extension

Very recently, a method was proposed for employing word2vec in the
bilingual context [10]. The proposed method trains two word2vec mod-
els independently and then, using a seed list of pairs of words and their
translation, the two spaces are aligned.

More specifically, assume that word wk in the first language is trans-
lated as word w′

k in the second, k = 1 . . t, where t is size of the seed
set. Let the vectors V1, V2, . . . , VD be the learned word2vec representa-
tions in the first language, and V ′

1 , V
′
2 , . . . , V

′
D′ the learned vectors of the

second. A transformation T is then learned from the space of the second
representation to the space of the first, such that the following measure is
minimized:

t∑
k=1

∥∥∥TV ′
w′

k
− Vwk

∥∥∥2 .



JOINT WORD2VEC NETWORKS FOR BILINGUAL ... 31

This is a linear least squares problem. In [10] stochastic gradient de-
scent was used to solve for the transformation T . In our experiments we
employ conventional linear solvers.

4 JOINT WORD2VEC

The bilingual method of [10] is motivated by the observation that when
visualizing the word vectors using PCA, the vector representations of
similar words in different languages were related by a linear transforma-
tion. However, since there is no guarantee that the two spaces are indeed
related by a linear transformation, it could be suboptimal to learn each
space separately and then try to align the two. In addition, if the corpora
used to train the two vector spaces are related, it might be beneficial to
use one language to improve the representation of the other, for example,
in cases of word sense ambiguities.

In our method, joint word2vec, two versions of the same text are used
for training. One of the versions is set to be the baseline version, and the
other is aligned to it using an HMM-based word-alignment model [14].
The result, for a specific text (which will be used in our next examples as
well) is illustrated in Fig. 1. In this example, a Hebrew verse from Genesis
is used as the baseline text, and the English King James translation is
mapped to it. Some of the words in the English text are not mapped to
any Hebrew words and vice versa.

The joint word2vec model is a variant of the word2vec model with
some significant modifications in both structure and training procedure
that allow for simultaneous learning of unified representations for both
languages. The input layer of the joint model corresponds to a union of
the two dictionaries. Let the glossary of the first (second) language, con-
sisting of frequent-enough words, be of size D (D′, respectively). The
input layer of the joint architecture is of size D + D′, where the first D
(last D′) elements correspond to the entries of the first (second) glossary.
The output layer is of size lg(D+D′), and encodes the words of the two
dictionaries based on their frequencies in the bilingual corpora. The hid-
den layer and the log-linear model structure remain as in the conventional
word2vec model.

The training procedure is shown in Fig. 2. It consists of four stages for
each input occurrence i of the first language. First, as in the conventional
word2vec, the neighborhood of i (first language) is used to predict word
i. Then, the same process is repeated for the second-language word that
is aligned to i, using the second-language words that are aligned with the



32 L. WOLF, Y. HANANI, K. BAR, N. DERSHOWITZ

Fig. 1. A short alignment example (Genesis 1:5), which is also used in Fig. 2.
The Hebrew verse (top row) is the baseline text to which the English verse at the
bottom row is aligned. The words in the middle are those words that were found
by the HMM model to match the Hebrew words they are connected to with an
arrow.

first-language neighborhood of i. Naturally, this only occurs when there
is a second-language word aligned with word i. Also, the aligned neigh-
borhood could be smaller than the first-language neighborhood since not
all first-language words are mapped to the second language.

These first two stages train two models using the same hidden layer.
However, the two models are not tied together: each is using only the part
of the input vectors Bin that corresponds to just one language. The next
two stages tie the models together at the semantic level. In these stages,
a word from one language is being predicted using the neighborhood in
the other language, which helps make the model language-agnostic. First,
the aligned word of the second language is predicted based on the neigh-
borhood of word i in the first language. The input vector Bin is derived
from data in the first language, and the output vector Bout is derived from
second language data. Lastly, the process is reversed: the aligned second
language neighborhood is used to predict and output vector Bout that is
the Hoffman coding of word i in the first language.

Since training of the joint word2vec is four times slower than training
of the conventional method, we modify the training procedure slightly.
Whereas the original method employs stochastic gradient descent, which
updates the network after observing each training samples, we introduced
“mini-batches” and update the weights only after a small number of train-
ing examples. In between updates, the gradient is accumulated but not
used to perform updates.

5 EVALUATION

We compare the performance of the proposed joint word2vec to the per-
formance of conventional word2vec and the performance of the bilingual



JOINT WORD2VEC NETWORKS FOR BILINGUAL ... 33

(a) (b)

(c) (d)

Fig. 2. An illustration of the joint word2vec network applied to a sample He-
brew/English verse during training. The input layer has two parts, corresponding
to the two vocabularies. During training there are four steps (a–d): (a) Word i
of the Hebrew text is predicted, that is, encoded at the output layer Bout

i in ac-
cordance to its Huffman encoding Hw(i). The Hebrew neighborhood of word i
is encoded through a bag-of-words scheme as the input layer Bin

i . The hidden
layer is a linear projection layer and the entire architecture is a simple log-linear
one. (b) Using the same architecture and the same hidden units, the process is
repeated for predicting the English word that corresponds to the Hebrew word i
from the English words that are mapped to the neighborhood of i. Note that this
neighborhood typically differs from the neighborhood in the English text and is
often smaller than the Hebrew neighborhood since some Hebrew words are not
aligned to any English words. (c) The Hebrew neighborhood is used to predict
the English word that matches word i. (d) The English neighborhood (see (b)) is
used to predict the Hebrew word i.



34 L. WOLF, Y. HANANI, K. BAR, N. DERSHOWITZ

model of [10] (Sect. 3.2). Given two texts, where the second is aligned
to the first, the transformation of this bilingual method is estimated using
all the words of the first text and their alignment, when they exist. Each
pair is used once, regardless of the number of its occurrences.

Three benchmarks have been devised: (i) a translation benchmark
that looks to see how close to each other a word and its translation are;
(ii) a homograph benchmark; and (iii) a single-language synonym bench-
mark. The benchmarks are applied on two datasets, except for the third
task, which is only applied to one dataset.

5.1 Datasets

In our experiments, as a second language, we used (transliterated) Arabic
and Hebrew – both highly inflected languages. Among other interesting
characteristics, Semitic languages in general are based on complicated
derivational as well as inflectional morphologies. Furthermore, the lack
of short vowels in writing increases the level of ambiguity of the written
word. Words are derived from a root and a pattern (template), combined
with prefixes and suffixes. The root consists of 3 or 4 consonants and
the pattern is a sequence of consonants and variables for root letters. Us-
ing the same root with different patterns may yield words with different
meanings. Words are then inflected for person, number and gender; pro-
clitics and enclitics are added to indicate definiteness, conjunction, vari-
ous prepositions, and possessive forms. On account of this morphological
complexity, a single Arabic or Hebrew word often translates into several
English words; for example, the English translation of the Arabic word
wbbytyn is “and in his two houses”.

Our first benchmark uses Arabic news stories that we aligned on the
word level with their English sources. Overall, we have about 4M Arabic
words. Due to Arabic’s rich morphology, we preprocessed the Arabic text
with MADA [15], a context-sensitive morphological analyzer that works
on the word level, and then used TOKAN [15] to tokenize the text, ad-
ditionally separating the definite article (Al) from nouns (and modifiers)
and the future particle (s) from verbs. For example, the word wbbyth,
“and in his house”, gets tokenized like this: w+ b+ byt +h, each token
respectively translated into: “and”, “in”, “house”, and “his”. Alignment
proceeds on this token level.

The second dataset was constructed by aligning the Bible, in Hebrew,
to its King James translation into English. The two resources are already
aligned at the verse level, and contain 23,145 verses. The Hebrew text,



JOINT WORD2VEC NETWORKS FOR BILINGUAL ... 35

like in Arabic, was tokenized using a context-sensitive morphological an-
alyzer and a tokenizer. We used the MILA [16] morphological analyzer,
with probabilities obtained using EM-HMM training [17, 18]. The He-
brew tokenization scheme is similar to the one for Arabic. Both resources
were aligned on the token level using GIZA++ [14], an implementation
of the IBM word alignment models [19]. GIZA++ is a popular statistical
machine translation toolkit that includes an HMM-based word-alignment
model. It uses Baum-Welch training, and includes smoothing techniques
for fertility (multiple-word translations of a single word).

For the synonym benchmark, we obtained the list of Biblical syn-
onyms used in [20]. That list was compiled in the following manner:
The King James translation of the Bible almost invariably translates syn-
onyms identically. So, one can generally identify Hebrew synonyms by
considering their translations. Word senses were derived from Strong’s
1890 concordance [21], which lists separately every occurrence of each
sense of each root that appears in the Bible. (Some anomalies due to
polysemy in English were manually removed from the list by a Bible
scholar.) The procedure yielded 529 synonym sets, ranging in size from
2 to 7 (“fear”), for a total of 1595 individual synonyms.

5.2 Experiments

The translation benchmark For each of the two datasets we identify pairs
of glossary words that are uniquely mapped between the two texts, that
is, we extract a list of words in the first text that are consistently aligned
by GIZA++ to the same word in the second. Ideally, the vector represen-
tations of the words in each pair would be as close as possible; indeed
the bilingual method of [10] directly minimizes the distance between the
representations of words that are mapped between the two languages.

The distance computed in the first benchmark is measured for our
method in the joint space, and in the method of [10] in each one of the
spaces, after the computed linear transformation is applied. In word2vec
experiments [1], cosine similarity (dot product of the normalized vectors)
is often used. We comply with this by computing the distance between
the normalized vectors, which also makes the comparison of distances
between the various vector spaces valid.

The results of this benchmark are depicted in Table 1. Sometimes the
joint word2vec outperforms the baseline algorithm and sometimes it is
the other way around. This is remarkable given that the score that the



36 L. WOLF, Y. HANANI, K. BAR, N. DERSHOWITZ

Table 1. The performance of various word2vec networks in the translation bench-
mark, in which distances of normalized vector representations of word pairs that
are uniquely aligned between the two languages are compared. For the Bible
(Heb) Dataset, the English text is aligned to the Hebrew one, and vice versa
for Bible (Eng). Since the alignment is not symmetric, the pairs of words used
for benchmarking differ between the two directions. The baseline algorithm [10]
(Sect. 3.2) runs conventional word2vec on each corpus separately and then esti-
mates a linear transformation that minimizes the L2 distance between the vector
representations of aligned words. It is evaluated for both alignment directions.
The joint word2vec algorithm is applied to both corpora at once. Shown are the
mean distance between vector pairs normalized to have a norm of one and the
standard error of these distances. A lower distance indicates greater proximity of
the vector representations of translated words.

Data-
set

Method
Normalized
Distance ±

Standard Error
News 2×Vanilla W2V (Eng and Arab mapped to Eng space) 1.1534 ± 0.0000

2×Vanilla W2V (Arab and Eng mapped to Arab space) 1.1505 ± 0.0000
Joint W2V (Eng+aligned Arab) 1.1644 ± 0.0000

Bible 2×Vanilla W2V (Heb and Eng mapped to Heb space) 0.9739 ± 0.0002
(Heb) 2×Vanilla W2V (Eng and Heb mapped to Eng space) 1.0066 ± 0.0002

Joint W2V (Heb+aligned Eng) 0.9710 ± 0.0002
Bible 2×Vanilla W2V (Eng and Heb mapped to Eng space) 0.8900 ± 0.0005
(Eng) 2×Vanilla W2V (Heb and Eng mapped to Heb space) 0.8543 ± 0.0005

Joint W2V (Eng+aligned Heb) 0.8790 ± 0.0006

baseline algorithm optimizes is directly related to the score employed in
the benchmark and that the baseline algorithm is applied twice.

The homograph benchmark We now consider the words in one language
that are mapped to multiple words in the second language. This can be (i)
a result of synonyms in the second language, or, (ii) as is almost always
the case when aligning the Hebrew Bible to the King James edition, a
result of homographs in the first language. For the first case, we would
like to have the vector representation of the word in the first space as
close as possible to that of the vector representations in the second space,
and the vector representations in the second space as close as possible.
In the second case, since the model is additive, it makes sense to expect
the vector representation of the word in the first language to be a linear
combination of the vector representations of the vectors in the second
language, that is, to be spanned by those vectors.



JOINT WORD2VEC NETWORKS FOR BILINGUAL ... 37

Since we have no means to determine which of the two cases is the
source of the multiple glossary word alignments, and since the spanning
criteria is also approximately satisfied in case two vectors are similar,
this criteria is the basis of our success score. Let Vi be the vector rep-
resentation of the word in the first language, and let V

′(k)
i , k = 1 . . n

be the n > 1 words that are aligned to it throughout its occurrences in
the dataset. The score employed in this benchmark is the reconstruction
error: ∥∥∥∥∥ Vi

‖Vi‖
−

n∑
k=1

λkV
′(k)
i

∥∥∥∥∥ ,
where the λk are the coefficients that minimize this error. The minimiza-
tion is obtained by solving (least squares) a linear set of L = 200 equa-
tions in these n unknowns. Note again, that in order to adhere to previous
work with word2vec, and to allow a fair comparison between different
vector spaces, the normalized version of Vi is used.

Table 2 depicts the results of this benchmark. The joint word2vec
method clearly outperforms the baseline method, and the difference in
performance is significant at an extremely low p-value in both t-test and
Wilcoxon signed rank test. We also report results for another variant of
the reconstruction error in which the weights λk are constrained to be
positive. This is motivated by the nature of the word2vec architectures, in
which, during training, projections are added but never subtracted. Natu-
rally, the added positiveness constraint increases the reconstruction error,
but this increase seems to be moderate, and in our experiments the order
of the scores obtained by the various algorithms does not change.

The synonym benchmark Lastly, we evaluated the quality of the learned
word2vec representation on the Hebrew list of biblical synonyms. Eighty
percent of the identified synonym pairs were included in our glossary,
which contains only words that appear at least three times. For each of
these we employ the distance between the normalized vector representa-
tions of the two words as the score.

This is a single language task and joint word2vec would outperform
the baseline method only if learning jointly two languages successfully
utilizes the information in the second language to improve the vector
space of the first. The results in Table 3 suggest that this is indeed the
case. A significant improvement is obtained in the joint word2vec method
in comparison to the baseline method.



38 L. WOLF, Y. HANANI, K. BAR, N. DERSHOWITZ

Table 2. The performance of various word2vec networks in the homograph
benchmark, in which the glossary words in the first language that are aligned
to multiple words in the second language are employed. The reconstruction er-
ror is the distance between the L2 normalized vector representation in the first
language to the linear space spanned by the vector representations in the second
language; lower is better. Also shown is the reconstruction error when the combi-
nation weights λk used to compute the linear combination are constrained to be
positive. Due to the additional constraint, the reconstruction errors are aways big-
ger; however, qualitatively the results remain the same. See text and the caption
of Table 1 for more details.

Data-
set

Method

Reconstruction
Error ±
Standard Error

Reconstruction
Error ±
Standard Error

(Positive Weights)
News 2×Vanilla W2V 0.9387 ± 0.0000 0.9469 ± 0.0000

(Eng + transformed Arab)
2×Vanilla W2V 0.9321 ± 0.0000 0.9388 ± 0.0000
(Arab + transformed Eng )
Joint W2V (Eng+aligned Arab) 0.8893 ± 0.0000 0.9000 ± 0.0000

Bible 2×Vanilla W2V 0.8063 ± 0.0001 0.8477 ± 0.0001
(Heb) (Heb and Eng mapped to Heb space)

2×Vanilla W2V 0.8410 ± 0.0001 0.8797 ± 0.0000
(Eng and Heb mapped to Eng space)
Joint W2V (Heb+aligned Eng) 0.7462 ± 0.0001 0.7613 ± 0.0001

Bible 2×Vanilla W2V 0.9033 ± 0.0002 0.9228 ± 0.0002
(Eng) (Eng and Heb mapped to Eng space)

2×Vanilla W2V 0.8173 ± 0.0004 0.8696 ± 0.0004
(Heb and Eng mapped to Heb space)
Joint W2V (Eng+aligned Heb) 0.6610 ± 0.0006 0.6896 ± 0.0006

6 DISCUSSION

In the experiments we conducted, both datasets are relatively small com-
pared to the sizes typically employed to learn representations in word2vec
models. Larger bilingual datasets are available; however, the processing
required by the GIZA++ software for these datasets could not fit into our
schedule. Fortunately, the joint word2vec software itself proved efficient
enough and scales equally well as the open-source word2vec, upon which
code base it is built. The up-side is that our experiments are the first to ex-
plore the utilization of word2vec on a scale possible for under-resourced
languages, in which digitized texts and translations are scarce. It is in-



JOINT WORD2VEC NETWORKS FOR BILINGUAL ... 39

Table 3. The performance of various word2vec networks on the Bible-Synonyms
benchmark. The distance between the normalized representations of each pair of
Hebrew synonyms is computed. As can be seen, the joint word2vec outperforms
the baseline method, although this is a single-language task. The results in the
two last rows are added for completeness, as they are expected to be worse. It
is interesting to note that even learning joint word2vec with Hebrew aligned to
English, which processes the Hebrew text in a way that is likely to disrupt its
structure, seems to outperform the baseline method.

Method Normalized Distance
± Standard Error

Vanilla W2V (Heb) 1.1864 ± 0.0013
Joint W2V (Heb+aligned Eng) 1.0637 ± 0.0015
2×Vanilla W2V (Heb mapped to Eng space) 1.2396 ± 0.0009
Joint W2V (Eng+aligned Heb) 1.1073 ± 0.0015

teresting that, at least at these scales, joint word2vec representations out-
perform vanilla word2vec learned vectors even at tasks requiring just one
language.

While our exposition is focused on the bilingual case, it should be
straightforward to generalize it to multiple languages. In fact, with little
modifications, the joint word2vec system can employ heterogeneous in-
puts to learn a unified “Babel fish” semantic vector representation for a
union of multiple dictionaries. During training, the weights can be up-
dated from unilingual texts (conventional word2vec), bilingual texts (as
done here), or aligned multi-lingual texts, each time updating the projec-
tion weights of the current word with accordance to the available data.

As an effective method to learn representations, word2vec is often
seen as part of the “deep learning” trend, in which neural networks con-
taining multiple layers and multiple non-linear transformations are used
to learn state-of-the-art representations in domains such as computer vi-
sion and speech processing. While there is nothing deep in the word2vec
architecture, by comparing it to deeper representations, the creators of
the original architecture have been able to demonstrate that the simplest
log-linear models are “as deep as is necessary”, thereby complying with
the road plan set forth by [22].

Still, the word2vec representation is wanting in some respects. For
example, it would be desirable that homographs would be represented,
not by one vector, but by a set of vectors. In the bilingual context, the au-
tomatic identification of homographs seems plausible. Recall that words



40 L. WOLF, Y. HANANI, K. BAR, N. DERSHOWITZ

in one language that are aligned with multiple words in the second lan-
guage are either homographs or are translated to a set of synonyms. As
discussed in Sect. 5.2, the set of synonyms should form a tight cluster,
which can be easily measured, for example, by computing the mean dis-
tance to the centroid of the set of vectors representing the aligned words.

REFERENCES

1. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word
representations in vector space. CoRR abs/1301.3781 (2013)

2. Ide, N., Wilks, Y.: Making sense about sense. In Agirre, E., Edmonds, P.,
eds.: Word Sense Disambiguation. Volume 33 of Text, Speech and Language
Technology. Springer Netherlands (2006) 47–73

3. Miller, G.A.: Wordnet: A lexical database for English. Communications of
the ACM 38 (1995) 39–41

4. Black, W., Elkateb, S., Vossen, P.: Introducing the Arabic WordNet project.
In: Proceedings of the Third International WordNet Conference (GWC-06.
(2006)

5. Ordan, N., Wintner, S.: Hebrew WordNet: A test case of aligning lexical
databases across languages. International Journal of Translation 19(1) (2007)
39–58

6. Hovy, E., Marcus, M., Palmer, M., Ramshaw, L., Weischedel, R.: Ontonotes:
The 90% solution. In: Proceedings of the Human Language Technology
Conference of the NAACL, Companion Volume: Short Papers. NAACL-
Short ’06, Stroudsburg, PA, USA, Association for Computational Linguistics
(2006) 57–60

7. Brown, P.F., Della Pietra, S.A., Della Pietra, V.J., Mercer, R.L.: Word-sense
disambiguation using statistical methods. In: Proceedings of the 29th Annual
Meeting on Association for Computational Linguistics. ACL ’91, Strouds-
burg, PA, USA, Association for Computational Linguistics (1991) 264–270

8. Gale, W., Church, K., Yarowsky, D.: Using bilingual materials to develop
word sense disambiguation methods. In: Proceedings of the International
Conference on Theoretical and Methodological Issues in Machine Transla-
tion. (1992) 101–112

9. Dagan, I., Itai, A.: Word sense disambiguation using a second language
monolingual corpus. Computational Linguistics 20(4) (1994) 563–596

10. Mikolov, T., Le, Q.V., Sutskever, I.: Exploiting similarities among languages
for machine translation. CoRR abs/1309.4168 (2013)

11. Bengio, Y., Ducharme, R., Vincent, P., Janvin, C.: A neural probabilistic
language model. J. Mach. Learn. Res. 3 (March 2003) 1137–1155

12. Mnih, A., Hinton, G.: Three new graphical models for statistical language
modelling. In: Proceedings of the 24th International Conference on Machine
Learning. ICML ’07, New York, NY, USA, ACM (2007) 641–648



JOINT WORD2VEC NETWORKS FOR BILINGUAL ... 41

13. Mikolov, T., Kombrink, S., Burget, L., Cernocky, J., Khudanpur, S.: Exten-
sions of recurrent neural network language model. In: Acoustics, Speech
and Signal Processing (ICASSP), 2011 IEEE International Conference on.
(2011) 5528–5531

14. Och, F.J., Ney, H.: A systematic comparison of various statistical alignment
models. Computational Linguistics 29(1) (2003) 19–21

15. Habash, N., Rambow, O., Roth, R.: MADA+TOKAN: A toolkit for ara-
bic tokenization, diacritization, morphological disambiguation, POS tagging,
stemming and lemmatization. In Choukri, K., Maegaard, B., eds.: Proceed-
ings of the Second International Conference on Arabic Language Resources
and Tools, Cairo, Egypt, The MEDAR Consortium (April 2009)

16. Itai, A., Wintner, S.: Language resources for Hebrew. Language Resources
and Evaluation 42(1) (March 2008) 75–98

17. Adler, M.: Hebrew Morphological Disambiguation: An Unsupervised
Stochastic Word-based Approach. PhD thesis, Ben-Gurion University (2007)

18. Goldberg, Y., Adler, M., Elhadad, M.: EM can find pretty good HMM POS-
taggers (when given a good start). In: Proceedings of ACL-08: HLT, Colum-
bus, OH, Association for Computational Linguistics (June 2008) 746–754

19. Brown, P.F., Della-Pietra, S.A., Della-Pietra, V.J., Mercer, R.L.: The math-
ematics of statistical machine translation. Computational Linguistics 19(2)
(1993) 263–313

20. Akiva, N.: Style-Based Analysis of Natural Language Using Lexical Fea-
tures. PhD thesis, Dept. Computer Science, Bar-Ilan Univ. (November 2013)

21. Strong, J.: The Exhaustive Concordance of the Bible. Jennings & Graham,
Nashville (1890)

22. Bengio, Y., LeCun, Y.: Scaling learning algorithms towards AI. In Bottou, L.,
Chapelle, O., DeCoste, D., Weston, J., eds.: Large Scale Kernel Machines.
MIT Press (2007)

LIOR WOLF
TEL AVIV UNIVERSITY,

ISRAEL
E-MAIL: <WOLF@CS.TAU.AC.IL>

YAIR HANANI
TEL AVIV UNIVERSITY,

ISRAEL
E-MAIL: <YAIR.HANANI@GMAIL.COM>



42 L. WOLF, Y. HANANI, K. BAR, N. DERSHOWITZ

KFIR BAR
TEL AVIV UNIVERSITY,

ISRAEL
E-MAIL: <BARKFIR@YAHOO.COM>

NACHUM DERSHOWITZ
TEL AVIV UNIVERSITY,

ISRAEL
E-MAIL: <NACHUMD@POST.TAU.AC.IL>


