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ABSTRACT 

A challenge to modeling incrementality in language processing 
is posed by complex NPs in some verb-final languages, where a 
parser does not see whether a clause that a parser currently 
processes is part of a complex NP and how deeply it is 
embedded. These indeterminacies are handled by structural 
underspecification and resolution within Dynamic Syntax. This 
article points out that the previous implementation of the 
mechanism faces a formal problem of introducing 
indistinguishable nodes into the tree, and proposes a solution 
by letting a parser determine node-addresses flexibly. Concrete 
analyses are given to Japanese relatives as a case of complex 
NPs in verb-final languages.  

KEYWORDS: Dynamic Syntax, incrementality, Japanese, 
relative clauses 

1 Introduction 

A central issue in recent processing studies is whether the incremental 
parsing thesis holds of verb-final languages. Despite initial negative 
suggestions [14], there has been a growing body of research pointing to 
a conclusion in which the answer is positive [6]. From a parser’s point 
of view, particularly challenging are complex NPs (e.g. NP with a 
relative clause, NP with an appositive clause) in some verb-final 
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languages such as Japanese and Korean: a complex NP in these 
languages consists of a clause ending with a verb and a head noun 
following the clause. So, in processing a clause, a parser does not see in 
advance (a) whether the current clause is a main clause or part of a 
complex NP and, if it is part of a complex NP, (b) how deeply it is 
embedded.  

These two indeterminacies are illustrated by the Japanese strings (1, 
2, 3). First, as shown in (1), argument NPs in Japanese may be dropped 
when they are identifiable contextually. The parentheses in (1) indicate 
that Mary-ga and hon-o may be dropped.  
 
(1) (Mary-ga) (hon-o)  ka-tta. 

(Mary-NOM) (book-ACC) buy-PAST 
‘Mary bought a book.’  

 
In Japanese, a relative clause precedes a head noun. Thus, the relative 
clause Mary-ga ka-tta in (2) is identical to the string (1) if hon-o is 
dropped in (1).  
 
(2) [[Mary-ga ka-tta] hon]-wa omoshiroi.  

[[Mary-NOM buy-PAST] book]-TOP interesting 
‘A book which Mary bought is interesting.’  

 
Note that the string (2) contains no morpheme that marks a relative 
clause.1 Thus, a parser, which processes Mary, cannot see whether 
Mary belongs to a relative clause as in (2) or a matrix clause as in (1). 
Further, as demonstrated in (3), a parser, which has processed the 
complex NP string Nai-ta otoko, is still unable to see whether this 
complex NP belongs to a matrix clause or, as in (3), it is part of a larger 
complex NP.  
 
(3) [[Nai-ta   otoko]-o nagusame-ta hito]-ga      

nige-ta 
[[cry-PAST man]-ACC comfort-PAST person]-NOM  
run.away-PAST 
‘A person who comforted a man who cried ran away.’ 

                                                           
1 It is reported that a verb in a relative clause in Japanese has a special 

intonation [13]. This intonational cue, however, is not available until a parser 
processes the verb kau (= ‘buy’) in (2). In Korean, the verbal suffix -u(n) 
indicates a relative clause [17], but, once again, this morphological cue is not 
available until a parser processes a verb. 
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An appropriate parser for Japanese must be flexible enough to 
accommodate these two indeterminacies. 

A reasonable method of handling such indeterminacies is to 
introduce structural indeterminacies to trees. This idea is implemented 
within Dynamic Syntax (DS) [2, 8, 10] as structural underspecification 
and resolution. This is intuitively plausible, but, as will be pointed out, 
the previous analysis [2, 9, 13] ends up inducing indistinguishable 
nodes into the tree. This constitutes a rather serious problem because it 
overturns a principal basis for explaining diverse linguistic data (Greek 
clitics [3], Japanese clefts [16]) and it prevents the DS modeling of 
English dialogue [15] from being applied to Japanese dialogue. In 
short, complex NPs in verb-final languages such as Japanese offer a 
good test case for evaluating the DS formalism.  

The aim of this article is to point out a formal problem that the 
extant DS treatment of complex NPs suffers from and to propose a 
solution by letting a parser determine node-addresses flexibly. The 
refined DS parser, it is argued, provides a more realistic model of 
language understanding in that a “look ahead” mechanism may be 
avoided and that intonational cues are more effectively utilized. To 
illustrate this point, the article examines Japanese relatives as a case of 
complex NPs in verb-final languages.  

2 Dynamic Syntax 

Dynamic Syntax (DS) is a grammar formalism that models knowledge 
of language; thus, DS is a theory of competence and regarded as 
generative grammar in the sense explicated by Noam Chomsky [4]. 
Unlike mainstream generative grammar, however, knowledge of 
language, or competence, is defined as a set of constraints on language 
performance, more specifically, the building-up of interpretation in 
context [2, 8, 10]. With such constraints, a parser processes a string of 
words left-to-right, and builds up semantic representation 
incrementally, without a separate level of syntactic structure: “syntax” 
within DS is no more than a set of constraints on how to build up a 
semantic tree progressively in context. 
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2.1   Trees and Tree Descriptions 

The aim of a parser is to construct a semantic tree that represents an 
interpretation of a string in context on the basis of word-by-word 
processing. Trees in DS are binary, an argument node being on the left 
and a functor node being on the right. Each node is decorated with a 
declarative unit, consisting of a formula and labels.2 A formula is 
semantic content at a node, and labels indicate various properties of the 
content; one example of labels is a logical type, which indicates the 
combinatorial property of the content. A formula is represented with 
the predicate Fo, whose argument comes from DFo = {Tom’, run’, …}. 
Content of some lexical items is not an element in DFo; for instance, the 
content of she is a place-holding variable U, called “meta-variable”, 
whose value is supplied contextually. A logical type is represented with 
the predicate Ty, whose argument comes from DTy = {e, t, e→t, …}. 
DTy is a finite set (for instance, it does not include a type for five-place 
predicates), and no operations are stipulated to generate types, such as 
type-lifting and composition of functors. For example, the parse of Tom 
runs gives rise to the semantic tree (4); for the sake of simplicity, tense 
is ignored throughout this article.  
 
(4)    {…, Fo(run’(Tom’)), Ty(t)}  

 
{…, Fo(Tom’), Ty(e)} {…, Fo(run’), Ty(e→t)}  

 
The notation “…” in each declarative unit indicates additional labels 

which are not explicitly shown here. Another example of labels is a 
decoration in LOFT (Logic Of Finite Trees [1]). This is a language to 
talk about trees, which enables a parser to describe the other nodes in 
the tree from the perspective of a current node. LOFT-operators are 
defined as follows. First, there are operators to model an immediate 
dominance relation: <↓0> is for argument daughters and <↓1> for 
functor daughters. For instance, <↓0>Ty(e) indicates that the argument 
daughter is of type-e; this label holds at the top node in (4). The 
inverses, <↑0> and <↑1>, describe a mother node from the perspective 
of an argument node and from the perspective of a functor node, 
respectively. Second, operators with the Kleene star * model a 
dominance relation. <↓*> describes a node somewhere below the 
current node, together with its inverse, <↑*>. These operators may 
describe a node at an arbitrary distance, but not across a “LINK” 
relation. Third, the “down” operator <D> and the “up” operator <U> 
model the weakest relation and may describe a node across a “LINK” 
relation. Finally, <L> and its inverse <L-1> describe a node within 

                                                           
2 Formally, DS structure is represented by a set of declarative units, where 

their relations are governed by LOFT (Logic Of Finite Tree) [1].  
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another structure that is LINKed from/to a current node. (For LINK 
relations, see Section 2.4.) 

Another type of label is a node identifier, Tn(a), where Tn is a tree-
node predicate. If a node is annotated with Tn(a), Tn(a0) indicates its 
argument daughter, and Tn(a1) indicates its functor daughter. A root 
node is marked by Tn(0), its argument daughter being by Tn(00) and its 
functor daughter being by Tn(01). Thus, the declarative unit at the root 
node in (4) is more precisely as in (5).  
 
(5) {…, Tn(0), <↓0>Tn(00), <↓1>Tn(01), Fo(run’(Tom’)), Ty(t), ♢}  

 
This declarative unit contains a pointer ♢. In a DS tree, there always 
exists a single node that is under development. Such an active node is 
marked by a pointer ♢. 

In non-final states, a tree is a “partial” structure in the sense that 
there exists a node decorated with a set of “requirements”. A tree is 
said to be well-formed iff there are no outstanding requirements, and a 
string is said to be grammatical iff there exists a tree update that leads 
to a well-formed tree. A requirement is notated as the label ?α at a node, 
which requires that α will hold at the node. For instance, ?Ty(e) 
requires that the node will be decorated with Ty(e). Every node is 
introduced with requirements and every single tree-update is driven by 
some form of requirements. A parser runs a set of actions in order to 
satisfy requirements, as we shall see in the next sub-section.  

2.2   Actions for Tree Updates 

Trees grow progressively on the basis of left-to-right processing of a 
string in context without postulating an independent level of syntactic 
structure. The starting point of tree update is determined by the AXIOM , 
which introduces an initial node with the following declarative unit:  
 
(6) {?Ty(t), ♢}  
 
?Ty(t) requires that this node will be of type-t. This requirement 
corresponds to the parser’s goal to build up an interpretation of a string: 
in this sense, tree growth is goal-directed. As a string is processed 
word-by-word, the initial node becomes increasingly richer: it is 
updated gradually and monotonically by a combination of general, 
lexical, and pragmatic actions.3 

                                                           
3 In earlier works [10], the initial node is also annotated with Tn(a), an 

arbitrary node-address. Tn(a) is not articulated in recent works [2, 8], the 
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First, general actions are a set of actions that are stored in the DS 
system and that are not lexicalized. Each general action is formulated 
as a program, or a sequence of instructions to update a tree. Instructions 
are in the conditional format (7).  
 
(7) IF … (“…” is a condition to be met by a node 

   highlighted by ♢)  
THEN … (“…” is an action to be run if the condition is met) 
ELSE … (“…” is an action to be run if the condition is not 

  met) 
 
The application of general actions is optional: a parser may run general 
actions at any time as long as the IF block is met by an active node. 
Examples of general actions will be presented in the next sub-section.  

Second, lexical actions are a set of actions that are stored in the DS 
system and that are lexicalized. Lexical items also encode a sequence 
of instructions to update a tree, but lexical actions differ from general 
actions in terms of optionality: a package of actions encoded in a 
lexical item α must be run every time α is parsed. For instance, inu (= 
‘dog’) encodes the macro of actions (8), where put(α) is a primitive 
action to decorate a node with α.  
 
(8) IF ?Ty(e)  

THEN put(Fo(ε, x, inu’(x)), Ty(e)) 
ELSE ABORT 

 
Thus, (8) declares that if a current node is decorated with ?Ty(e), a 
parser annotates the node with Fo(ε, x, inu’(x)) and Ty(e). ABORT in 
the ELSE block ensures that this action cannot be executed unless the 
IF block is met. In (8), (ε, x, inu’(x)) is a type-e term that denotes a 
dog, expressed in Epsilon Calculus.4 As shown in (1), argument NPs in 

                                                                                                                    
assumption being that the node introduced by the AXIOM  is a root node of the 
whole tree. In Section 4, I shall modify the AXIOM  so that it introduces a 
node that is underspecified for a node-address.  

4 Epsilon Calculus is a formal study of arbitrary names in natural deduction in 
Predicate Logic, proposed by David Hilbert. Every quantified NP is mapped 
onto an epsilon term, a type-e term defined as a triple: an operator, a 
variable, and a restrictor. In the case of (ε, x, inu’(x)), the existential operator 
ε binds the variable x that is restricted by the predicate inu’. This term stands 
for an arbitrary witness of the Predicate Logic formula ∃x.inu’(x). Since 
quantified NPs are uniformly analyzed as type-e terms, a quantified NP at an 
object position is handled without assuming type-shifting or quantifier 
movement [5]. A scope relation is expressed in a scope statement, where 
each term is in a dependency relation to others. This statement is constructed 
gradually as quantified NPs are parsed. Once a complete statement arises, 
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Japanese may be dropped. Thus, verbs encode a macro of actions to 
build up a propositional skeleton with argument slots. If NPs are 
dropped, such slots are contextually assigned content; if NPs have been 
processed, such slots collapse with the nodes that have been created by 
the parse of these NPs (cf. Section 3).  

Third, pragmatic actions are a set of actions whose schematic rule-
structures are stored in the DS system but whose execution involves 
pragmatic inference. A case of pragmatic actions pertinent to the 
present article is SUBSTITUTION, which saturates a meta-variable. For 
instance, the parse of he puts a meta-variable Fo(UMALE) at a node, with 
a requirement that the node will be annotated with a formula denoting a 
male. This requirement drives SUBSTITUTION, replacing the variable 
with a content denoting a male with reference to contextual factors. 
SUBSTITUTION resolves underspecification in content. This is a quite 
familiar process in linguistics, but DS assumes another, less familiar 
form of underspecification: underspecification of structural relation.  

2.3   Structural Underspecification and Resolution 

Within DS, a node may be initially unfixed and resolved later. There 
are three types of general actions to induce unfixed relations with 
different locality restrictions:  
 
(9) a.  LOCAL *A DJUNCTION: to induce a node that is “locally” 

     unfixed 
b.  *ADJUNCTION: to induce a node that is “non-locally”  

   unfixed 
c.  GENERALIZED ADJUNCTION: to induce a node that is 

   “globally” unfixed 
 
These general actions may be run only if a pointer ♢ is at a type-t-
requiring node; so, unfixed nodes are always hung from a type-t-
requiring node.  

First, LOCAL *A DJUNCTION induces an unfixed node that must be 
fixed within a local proposition. This node is decorated with 
<↑0><↑1*>?Ty(t). This means that if a pointer ♢ moves up from an 
argument node (and possibly keeps going through functor nodes), then 
a parser finds a type-t-requiring node. For instance, <↑0><↑1*>?Ty(t) 
may be <↑0>?Ty(t), <↑0><↑1>?Ty(t), <↑0><↑1><↑1>?Ty(t), and so on. 

                                                                                                                    
every term in a proposition is “evaluated”: it reflects the full scope relation 
into the restrictor of that term. Since this evaluation process is not pertinent, 
it is disregarded in this article. 
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Given this restricted dominance relation, the node is fixed under the 
closest type-t-requiring node. If a pointer crosses a type-t-requiring 
node, the relation includes more than one <↑0>, as in 
<↑0><↑1><↑1><↑0>?Ty(t), which contradicts <↑0><↑1*>?Ty(t). This 
unfixed relation is resolved by a case particle. For instance, the lexical 
action encoded in the nominative-case particle ga puts the label 
<↑0>?Ty(t) at an unfixed node, fixing it as a subject node under the 
closest type-t-requiring node.  

Second, *ADJUNCTION induces an unfixed node that may be 
resolved at any node as long as the unfixed relation does not cross a 
LINK relation. Such nodes are marked by <↑*>?Ty(t), which ensures 
that a pointer may cross a type-t-requiring node. This non-local unfixed 
relation cannot be resolved lexically. For instance, the accusative-case 
particle o narrows down possible fixed positions to a set of object 
nodes, each under some type-t-requiring node, but it does not specify a 
unique position. However, this unfixed relation may be resolved by the 
general action UNIFICATION: ?Ty(α)-unfixed node unifies with a Ty(α)-
fixed node, as a result of which the fixed node is annotated with the 
union of the two declarative units.  

Third, GENERALIZED ADJUNCTION induces a node that is wholly 
unfixed (i.e. may be across a LINK boundary). This globally unfixed 
relation is modeled by decorating the unfixed node with <U>?Ty(t), 
where the “up” operator <U> models a dominance relation across a 
LINK relation, allowing a pointer ♢ to move up and to cross a LINK 
boundary (cf. Section 2.1). An unfixed node induced by GENERALIZED 
ADJUNCTION may not be resolved by the parse of case particles for the 
same reason as stated in the last paragraph. 

2.4   LINK Relations 

Within DS, two structures may be built up in tandem, one of which is 
LINKed to the other. LINK is a relation between two structures that 
share a formula, and it is used for modeling, among other things, 
relatives in the following manner: a parser builds up an adjunct 
structure and LINKs the top node of the adjunct structure to a fresh 
node in an emergent main structure; a parser enriches this fresh node 
with the content of the adjunct structure. In this course of LINK 
transitions there are two crucial steps.  

First, the general action LINK INTRODUCTION induces a LINK 
relation between a top node in an adjunct structure and a new type-e-
requiring node in an emergent main structure. From the perspective of a 
node in a main structure, the top node of an adjunct structure may be 
described by the operator <L> (cf. Section 2.1). So, the label <L>α at a 
node in a main structure declares that if a parser looks at a LINKed 
node in an adjunct structure, the LINKed node is annotated with α. 
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Given the inverse operator <L-1>, the following relation holds: 
<L-1>Tn(a) ⇔ Tn(aL).  
 
(10) LINK  INTRODUCTION 

 
IF Ty(t), <D>(Fo(α)) 
THEN make(<L-1>); go(<L-1>); put(?∃x.Fo(x[α]), ?Ty(e)) 
ELSE ABORT 

 
In (10), make and go are primitive actions concerning a node creation 
and a pointer movement, respectively. The IF block requires that a 
current node be of type-t and that a node somewhere below this node be 
decorated with Fo(α), where α is an arbitrary type-e term.5 The THEN 
block requires that, if the IF block is satisfied, a parser initiate an 
inverse LINK relation from the current node to a fresh node in an 
unfolding main structure, and decorate the node with the requirements: 
?∃x.Fo(x[α]) and ?Ty(e). ?∃x.Fo(x[α]) requires that this node will be 
decorated with a term that contains α as a sub-term; this ensures that 
the two LINKed structures share a term α.  

Second, the fresh node in an emergent main structure is decorated by 
a head noun, and enriched with the content of the adjunct structure. 
This enrichment process is formulated as the general action LINK 
EVALUATION .  
 
(11) LINK  EVALUATION  

 
IF Ty(e), Fo(ε, y, φ(y)) 

 THEN IF <L>(Fo(ψ[(ε, x, P(x))]))  
  THEN put(Fo(ε, y, φ(y)&ψ[y/(ε, x, P(x))])) 
  ELSE ABORT 

 ELSE ABORT 
 

(ε, y, φ(y)) is the content of a head noun, and ψ is the content of a 
relative clause, where (ε, x, P(x)) is the content of a gap in the relative 
clause. A parser reflects ψ into the term (ε, y, φ(y)) as an additional 
restrictor by re-binding (ε, x, P(x)) in ψ with the variable y, as in (ε, y, 
φ(y)&ψ[y/(ε, x, P(x))]). As a consequence, this composite term denotes 
an entity that satisfies not only the description of the head noun but also 
the description of the relative clause. 

                                                           
5 In the previous work [9], the operator with the Kleene-star ↓* (instead of the 

“down” operator <D>) was used. This article presents LINK INTRODUCTION 
by replacing ↓* with <D>. This is because Japanese relatives are not sensitive 
to islands, as will be pointed out in Section 4.4. The next section shows that, 
even if this modification is made, the present version of LINK 
INTRODUCTION is not adequate.  
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3 The Problem 

Let us outline the previous DS account of Japanese relatives [2, 9, 13]. 
Consider (12), where the head noun otoko (= ‘man’) is preceded by the 
relative clause Nai-ta.  
 
(12) [Nai-ta  otoko]-ga nige-ta. 

  [cry-PAST man]-NOM run.away-PAST 
‘A man who cried ran away.’  

 
In this earlier view, the AXIOM  induced the initial node (6). Since naku 
(= ‘cry’) may belong to an embedded structure of an arbitrary depth, a 
parser introduced a globally unfixed type-t-requiring node by running 
GENERALIZED ADJUNCTION. This unfixed relation is shown by the 
dotted line in (13). Under this node, a parser ran the lexical actions 
encoded in naku, constructing a propositional template with a subject 
slot. Since no argument NPs had been parsed, a parser annotated this 
subject slot with the term (ε, x, P(x)), where P is an abstract predicate.6  
 
(13) Parsing Nai-ta7 
 

     {?Ty(t)} 
 

{Fo(naku’(ε, x, P(x))), Ty(t), <D>(Fo(ε, x, P(x))), ♢}           
   

{Fo(ε, x, P(x)), Ty(e)}       {Fo(naku’), Ty(e→t)} 
 
Then, in order to parse the head noun otoko, a parser executed LINK 
INTRODUCTION, initiating an inverse LINK relation from the type-t 
node to a new type-e-requiring node in an unfolding main structure, as 
shown by the curved arrow in (14). This node was also globally unfixed 
with respect to the root node since it might turn out to be part of a 
larger structure.  
 

                                                           
6 In some previous accounts [2, 13], the node for a gap is notated as a variable. 

But this article follows a more recent account [9] in decorating the node with 
a term involving an abstract predicate P. However, this is just for expository 
purposes, and the analysis to be proposed in Section 4 may be recast in line 
with the previous accounts [2, 13]. 

7 In this and subsequent trees, only relevant labels are expressed in declarative 
units.  
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(14) Parsing Nai-ta + LINK  INTRODUCTION 
     {?Ty(t)} 

 
{?∃y.Fo(y[(ε, x, P(x))]), ?Ty(e), ♢} 
 
 
 

{Fo(naku’(ε, x, P(x))), Ty(t), <D>(Fo(ε, x, P(x)))}      
   

{Fo(ε, x, P(x)), Ty(e)}     {Fo(naku’), Ty(e→t)} 
 
The current node in (14) was then decorated by the parse of the head 
noun otoko, and enriched by LINK EVALUATION . The resulting 
declarative unit is shown in (15).  
 
(15) {Fo(ε, y, otoko’(y)& naku’(y)), Ty(e), ♢} 
 
This type-e node was fixed as a subject by the parse of the nominative-
case particle ga. The parse of nigeru (= ‘run away’) then created a main 
structure, where the type-e node decorated with the declarative unit 
(15) was identified as a subject node.  

Notice that the previous DS account ends up with two unfixed nodes 
of the same type hung from the same node, as shown by the two dotted 
lines in (14). That is, the AXIOM  set out an initial node as the root node 
of the whole tree, and with respect to this root node two unfixed nodes 
were introduced for the relative clause and for the head noun. But 
multiplication of unfixed relations is not licit: in Logic Of Finite Trees 
[1], each node must be uniquely identifiable with respect to the other 
nodes in a tree; but if two unfixed nodes with the same locality 
restriction were hung from the same node, they would be 
indistinguishable and cannot be uniquely defined in the tree.8  

More than one unfixed node, however, may be hung from the same 
node if they are of different sorts. Recall that there are three types of 
locality restrictions on unfixed relations and that they differ in terms of 
where an unfixed node may be resolved (cf. Section 2.3). This means 
that if two unfixed nodes have different locality restrictions, they are 
distinguishable and may be introduced from the same node. In (14), 
however, the two unfixed relations are both globally unfixed and 
cannot be distinguished. Thus, the tree (14) is formally illegitimate, and 

                                                           
8 “Structural underspecification and resolution” is formally similar to 

“functional uncertainty” within LFG [7], but it seems there is no LFG 
analogue of the unique-unfixed-node constraint; a functional uncertainty for 
FOCUS may have more than one solution if the value is a set, each member of 
the set being associated with different values [11] (Mary Dalrymple p.c.). 
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it is concluded that the previous DS account of Japanese relatives [2, 9, 
13] is inadequate.  

The problem of multiplying unfixed relations occurs generally in the 
DS treatment of complex NPs in verb-final languages such as Japanese 
and Korean. This is because a modifier (e.g. relative clause) in these 
languages precedes a head noun, and the head noun could be part of a 
larger complex NP. The challenge is how a parser processes complex 
NPs incrementally in these languages without multiplying unfixed 
relations with the same locality restriction.  

4 Solution 

This section proposes a solution to the problem raised in the last 
section. The heart of the proposal is to let a parser determine node-
addresses flexibly. To this end, I shall drop the assumption that the 
AXIOM  introduces a root node of the whole tree and that a head noun is 
processed with respect to this root node.  

Firstly, the AXIOM  is modified so that it introduces a node decorated 
with not only the type requirement ?Ty(t) but also the node-address 
requirement ?∃x.Tn(x), together with a place-holding variable for a 
node-address, as in Tn(U).  
 
(16) AXIOM  (modified) 

 
{Tn(U), ?∃x.Tn(x), ?Ty(t), ♢} 

 
The meta-variable U may be substituted with 0, in which case the node 
is identified as a root node. Alternatively, it may be substituted with an 
arbitrary constant “a”, whose actual manifestation will be determined at 
a later step (cf. Section 4.1).9   

Second, LINK INTRODUCTION is modified as in (17), where the 
essential point is that a node for a head noun is structurally 
underspecified with respect to a new type-t-requiring node. In plain 
English, (17) declares the following: if a node is of type-t and decorated 
with a proposition involving a term α, a parser initiates an inverse 
LINK relation from this propositional node to a type-e-requiring node; 
this type-e-requiring node is annotated with the requirement that this 
node will be annotated with a term containing α as a sub-term; a parser 

                                                           
9 The use of meta-variables in modeling an underspecification of node-address 

is inspired by Ronnie Cann, and the use of arbitrary constants to saturate 
such meta-variables is suggested by Ruth Kempson. I am grateful for 
insightful discussions I have had with them. 
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structurally underspecifies this type-e-requiring node with respect to a 
new type-t-requiring node.10  
 
(17) LINK  INTRODUCTION (modified) 

 
IF Ty(t), <D>(Fo(α)) 
THEN make(<L-1>); go(<L-1>); put(?∃x.Fo(x[α]), ?Ty(e));  

make(<↑*>); go(<↑*>);  
put(Tn(U), ?∃x.Tn(x), ?Ty(t)); go(<↓*>)  

ELSE ABORT 

4.1   Illustration One: Simple Cases of Relatives 

For illustration, let us consider the simple case of relatives (12), 
repeated here as (18).  
 
(18) [Nai-ta  otoko]-ga nige-ta. 

  [cry-PAST man]-NOM run.away-PAST 
‘A man who cried ran away.’  

 
An initial node is set out by the modified AXIOM . Unlike the previous 
DS account [2, 9, 13], a parser may process the relative clause Nai-ta 
directly under this initial node.  
 
(19) Parsing Nai-ta 

 
{Tn(U), ?∃x.Tn(x), Fo(naku’(ε, x, P(x))), Ty(t), <D>(Fo(ε, x, P(x))), ♢} 
 

{Fo(ε, x, P(x)), Ty(e)}   {Fo(naku’), Ty(e→t)} 
 
If the string ended here, a parser would identify the top node as a root 
node of the tree by saturating Tn(U) as Tn(0). In (18), however, Nai-ta 
is a relative clause.11 Further, it is unknown at this point how deeply 

                                                           
10 The locality restriction on this type-e-requiring unfixed node is the same as 

that imposed by *ADJUNCTION. This is because a head noun may be long-
distance scrambled; for the detail, see a DS account of long-distance 
scrambling [2]. 

11 When the verb naku appears in a relative clause, it has a special intonation 
[13] (cf. Section 1). This intonational cue cannot be made use of in the 
previous analysis [2, 9, 13], where GENERALIZED ADJUNCTION had to fire 
before the parse of relative clauses. By contrast, in my analysis, a parser does 
not run GENERALIZED ADJUNCTION, and may process a relative clause 
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the relative clause is embedded. Thus, a parser substitutes Tn(0) with 
Tn(a), where “a” is an arbitrary constant whose manifestation is worked 
out at a later step. A parser then runs LINK INTRODUCTION (17) in 
order to create a node for the head noun otoko (= ‘man’). At this stage, 
the tree has been updated as in (20), where a triangle schematizes the 
internal structure.  
 
(20) Parsing Nai-ta + LINK  INTRODUCTION 

     {Tn(U), ?∃x.Tn(x), ?Ty(t)} 
 

{?∃y.Fo(y[(ε, x, P(x))]), ?Ty(e), ♢} 
 
 
{Tn(a), Fo(naku’(ε, x, P(x))), Ty(t), <D>(Fo(ε, x, P(x)))}     

 
 

In (20), the current node is non-locally unfixed with respect to a new 
type-t-requiring node (cf. footnote 10). This non-local unfixed relation 
is shown by the dashed line.  

Now that a type-e-requiring node is present, a parser may process 
the head noun otoko (= ‘man’), decorating the node with content and 
type, and LINK EVALUATION  then incorporates the content of the 
relative clause into the node.  
 
(21) Parsing Nai-ta otoko + LINK  EVALUATION      

                {Tn(U), ?∃x.Tn(x), ?Ty(t)} 
   

  {Fo(ε, y, otoko’(y)& naku’(y)), Ty(e), ♢} 
 
 
 
   {Tn(a), Fo(naku’(ε, x, P(x))), Ty(t), <D>(Fo(ε, x, P(x)))}     

       
 
The rest of the process is as usual: the nominative-case particle ga 
marks the current node in (21) as a subject node, and the matrix verb 
nigeru (= ‘run away’) fleshes out a main propositional structure, where 
the subject node is identified as the node for the head noun. Finally, a 
parser saturates Tn(U) at the top node as Tn(0), ensuring that this is a 
root node. Once this node-address is specified, the actual manifestation 

                                                                                                                    
directly under an initial node set out by the AXIOM . The intonational cue then 
helps the parser to saturate Tn(U) at the initial node as Tn(a).  
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of the arbitrary constant “a” in Tn(a) is automatically explicated as 
Tn(00L).  
 
(22) Parsing [Nai-ta otoko]-ga nige-ta 
 

         {Tn(0), Fo(nigeru’(ε, y, otoko’(y)& naku’(y))), Ty(t), ♢} 
    
       {Fo(ε, y, otoko’(y)& naku’(y)), Ty(e)} {Fo(nigeru’), Ty(e→t)} 

 
 

{Tn(00L), Fo(naku’(ε, x, P(x))), Ty(t), <D>(Fo(ε, x, P(x)))} 
 
 
Notice that in the tree update above, no multiple unfixed nodes have 
been induced. This is because a node for a head noun is structurally 
underspecified with respect to a new type-t-requiring node that may be 
distinct from the root node of the whole tree. 

The account is also applicable to (23), where, unlike (18), part of the 
matrix clause (i.e. Tom-ga) is processed before the relative clause nai-
ta.  
 
(23) Tom-ga [nai-ta otoko]-o  nagusame-ta. 

  Tom-NOM [cry-PAST man]-ACC comfort-PAST 
‘Tom comforted a man who cried.’ 

 
Again, an initial node is set out by the AXIOM  (16), and after LOCAL 

*A DJUNCTION creates a type-e-requiring unfixed node, Tom decorates 
the node with content and type and ga fixes it as a subject node. Since 
Tom-ga is part of a matrix clause, Tn(U) may be saturated as Tn(0), a 
node-address for a root node of the whole tree.  
 
(24) Parsing Tom-ga  

 {Tn(0), ?Ty(t), ♢} 
   
   {Fo(Tom’), Ty(e)}            

 
What comes next is naku (= ‘cry’). A parser would develop the current 
propositional structure if naku were a matrix verb. In (23), an 
intonational break between Tom-ga and nai-ta signals that naku is an 
embedded verb, and a parser runs GENERALIZED ADJUNCTION to induce 



TOHRU SERAKU 70 

a globally unfixed type-t-requiring node.12 The lexical actions encoded 
in naku flesh out this type-t-requiring node, providing a propositional 
template where a subject slot is decorated with the term (ε, x, P(x)), as 
usual.  
 
(25) Parsing Tom-ga nai-ta + GENERALIZED ADJUNCTION 
 

 {Tn(0), ?Ty(t)}        
   

   {Fo(Tom’), Ty(e)}            

{Fo(naku’(ε, x, P(x))), Ty(t), <D>(Fo(ε, x, P(x))), ♢}  
      

               {Fo(ε, x, P(x)), Ty(e)} {Fo(naku’), Ty(e→t)} 
 
A parser runs LINK INTRODUCTION, initiating an inverse LINK relation 
to a type-e-requiring node that is unfixed with respect to a fresh type-t-
requiring node.  
 
(26) Parsing Tom-ga nai-ta + LINK  INTRODUCTION 
 

 {Tn(0), ?Ty(t)}  {Tn(U), ?∃x.Tn(x), ?Ty(t)} 
   

   {Fo(Tom’), Ty(e)}              {?∃y.Fo(y[(ε, x, P(x))]), ?Ty(e), ♢} 
 
 

{Fo(naku’(ε, x, P(x))), Ty(t), <D>(Fo(ε, x, P(x)))}  
      

  
The rest of the process is as usual: (a) the head noun otoko decorates 
the current node with content and type; (b) LINK EVALUATION  
incorporates the content of the relative clause into the node for the head 
noun; (c) the accusative-case particle o marks this node as an object 
under the type-t-requiring node; (d) the matrix verb nagusameru 
(= ‘comfort’) develops this type-t-requiring node by providing a 
propositional schema, where the object slot collapses with the node for 
the head noun and the subject slot is decorated with a meta-variable as 
in Fo(V).  
 

                                                           
12 Here, *ADJUNCTION cannot fire because this general action requires that a 

current node not have any dominated node. In the present case, the current 
node has a dominated node (i.e. the node decorated with Fo(Tom’)).  
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(27) Parsing Tom-ga [nai-ta otoko]-o nagusame 
 

{Tn(U), ?∃x.Tn(x), ?Ty(t), ♢} 
   

       {Fo(V), Ty(e)}     {?Ty(e→t)} 
 

                               {Fo(nagusameru’),  Ty(e→(e→t))} 
{Fo(ε, y, otoko’(y)& naku’(y)),  Ty(e)} 

 
  {Tn(0), ?Ty(t)}  
 
{Fo(Tom’), Ty(e)}  

{Fo(naku’(ε, x, P(x))), Ty(t), <D>(Fo(ε, x, P(x)))} 
 
 
Now, a parser may saturate Tn(U) at the current node as Tn(0). As a 
result, this node is identified with the node set out by the AXIOM . 
Concomitantly, the node decorated with Fo(V) collapses with the node 
decorated with Fo(Tom’). (Recall that the dotted line indicates a 
globally unfixed relation, which may cross a LINK boundary.) For 
reasons of space, only the declarative unit at the root node is provided 
here as (28), which correctly represents the truth-conditional content of 
the string (23).  
 
(28) {Tn(0), Fo(nagusameru’(ε, y, otoko’(y)& naku’(y))(Tom’)), 

Ty(t), ♢} 

4.2   Illustration Two: Relative Clause Nesting 

In the present account, a node for a head noun is structurally 
underspecified within a new propositional structure, and once this 
propositional structure is fully developed a parser may run LINK 
INTRODUCTION to induce another inverse LINK relation. Thus, the 
account naturally models successive relative clause embedding without 
failing to capture the left-to-right processing of the sequence. To 
illustrate, consider the case of relative clause nesting as in (29), where 
the complex NP Nai-ta otoko (= ‘a man who cried’) is part of the 
relative clause that modifies the head noun hito (= ‘person’).     
 
(29) [[Nai-ta    otoko]-o nagusame-ta hito]-ga      

nige-ta 
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[[cry-PAST  man]-ACC comfort-PAST person]-NOM  
run.away-PAST 
‘A person who comforted a man who cried ran away.’ 

 
The parse of this string up to otoko (= ‘man’) gives rise to the same tree 
as (21). The unfixed node for otoko is marked as an object node by the 
accusative-case particle o. Then, nagusameru (= ‘comfort’) provides a 
propositional template; an object slot collapses with the node for otoko, 
and a subject slot is decorated with Fo(ε, y, Q(y)). At this stage, a 
parser may run LINK INTRODUCTION once again in order to parse the 
head noun hito, initiating another inverse LINK relation from the 
propositional node decorated with Fo(nagusameru’(c)(ε, y, Q(y))) to a 
type-e-requiring node. 
 
(30) Parsing [Nai-ta otoko]-o nagusame-ta + LINK  INTRODUCTION  

 
           {Tn(U), ?∃x.Tn(x), ?Ty(t)}   

 
      {?∃y.Fo(z[(ε, y, Q(y))]), ?Ty(e), ♢} 

 
{Tn(b), Fo(nagusameru’(c)(ε, y, Q(y))), Ty(t)}      

     
 {Fo(ε, y, Q(y)), Ty(e)} {Fo(nagusameru’(c)), Ty(e→t)} 
 

      {Fo(α), Ty(e)}  {Fo(nagusameru’), Ty(e→(e→t))} 
 

{Tn(a), Fo(naku’(ε, x, P(x))), Ty(t), <D>(Fo(ε, x, P(x)))}  
         

                         where α = (ε, y, otoko’(y)& naku’(y)) 
 
The rest of the process is as usual: (a) the current node is decorated by 
the head noun hito; (b) LINK EVALUATION  reflects the content of the 
relative clause into the node for hito; (c) the node for hito is marked as 
a subject by the nominative-case particle ga under a new type-t-
requiring node; (d) this type-t-requiring node is fleshed out by nigeru 
(= ‘run away’), where the subject slot collapses with the node for hito; 
(e) finally, Tn(U) at the top node is saturated as Tn(0), a node-address 
for a root node of the whole tree. The declarative unit at the root node 
is shown in (31). 

 
(31) {Fo(nigeru’(ε, z, hito’(z)& nagusameru’(ε, y, 

otoko’(y)& naku’(y))(z))), Tn(0), Ty(t), ♢} 
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4.3   Illustration Three: Scrambling of Complex NPs  

Japanese allows the permutation of arguments, so-called “scrambling”. 
Thus, a head noun modified by a relative clause may be fronted: 
compare (23) with (32).  
 
(32) [Nai-ta otoko]-o Tom-ga  nagusame-ta. 

  [cry-PAST man]-ACC Tom-NOM comfort-PAST 
‘Tom comforted a man who cried.’ 

 
Scrambling is also dealt with by the present account. In (32), the parse 
of the relative clause Nai-ta provides a propositional template, where a 
subject slot is decorated with Fo(ε, x, P(x)), and LINK INTRODUCTION 
initiates an inverse LINK relation from this type-t node to a type-e-
requiring unfixed node. This unfixed node is decorated by the head 
noun otoko (= ‘man’) and enriched by LINK EVALUATION .  
 
(33) Parsing Nai-ta otoko + LINK  EVALUATION  

     {Tn(U), ?∃x.Tn(x), ?Ty(t)} 
            

{Fo(ε, y, otoko’(y)& naku’(y)), Ty(e), ♢} 
 
 
{Tn(a), Fo(naku’(ε, x, P(x))), Ty(t), <D>(Fo(ε, x, P(x)))} 

 
 

The current node is marked as an object node by the accusative-case 
particle o. Then, a pointer ♢ goes up to the type-t-requiring node, where 
Tom-ga induces a subject node and nagusameru (= ‘comfort’) creates a 
propositional template, where a subject slot collapses with the node for 
Tom. Finally, Tn(U) is saturated as Tn(0). The root node is decorated 
with (34); this declarative unit is exactly the same as the one in (28), 
which predicts that the string (32) is truth-conditionally equivalent to 
the string (23).  
 
(34) {Tn(0), Fo(nagusameru’(ε, y, otoko’(y)& naku’(y))(Tom’)), 

Ty(t), ♢} 

4.4 Illustration Four: Unbounded-Dependency and Island-Insensitivity 

Japanese relatives exhibit “unbounded-dependency”: a head noun may 
be associated with a gap in a relative clause across a clause boundary. 



TOHRU SERAKU 74 

Thus, in (35), the head noun otoko (= ‘man’) is associated with the 
subject gap of naku (= ‘cry’) across the clause boundary Tom-ga … i-
tta.  
 
(35) [[Tom-ga    [nai-ta to] i-tta]    otoko]-ga

 nige-ta. 
[[Tom-NOM  [cry-PAST COMP] say-PAST]  man]-NOM

 run.away-PAST 
‘A man who Tom said cried ran away.’  

 
Prior to the head noun otoko, the parse of (35) leads to the semantic tree 
(36).  
 
(36) Parsing Tom-ga nai-ta to i-tta 

 
{Tn(a), Fo(iu’(naku’(ε, x, P(x)))(Tom’)), Ty(t), <D>(Fo(ε, x, P(x))), ♢}  

 
 
<D>(Fo(ε, x, P(x))) declares that the term (ε, x, P(x)) is found 
somewhere below the current node (possibly, across a LINK boundary; 
cf. Section 2.4.) Thus, the IF block of LINK INTRODUCTION is met and 
a parser initiates an inverse LINK relation to a type-e-requiring node, 
imposing a requirement that this node will be annotated with a term 
containing (ε, x, P(x)) as a sub-term. This type-e-requiring node is 
decorated by the head noun otoko (= ‘man’) and enriched by LINK 
EVALUATION . 
 
(37) Parsing Tom-ga nai-ta to i-tta otoko + LINK  EVALUATION   

 
     {Tn(U), ?∃x.Tn(x), ?Ty(t)} 

            
           {Fo(ε, y, otoko’(y)& iu’(naku’(y))(Tom’)), Ty(e), ♢} 
 
 
{Tn(a), Fo(iu’(naku’(ε, x, P(x)))(Tom’)), Ty(t), <D>(Fo(ε, x, P(x)))}  
 

 
The current node is marked as a subject by the nominative-case particle 
ga, and the matrix verb nigeru (= ‘run away’) creates a propositional 
schema where a subject slot collapses with the node for otoko. The root 
node in the final state is decorated with the declarative unit in (38). 
 
(38) {Tn(0), Fo(nigeru’(ε, y, otoko’(y)& iu’(naku’(y))(Tom’))), 

Ty(t), ♢} 
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Given the lack of restrictions on where the term to be shared in the pair 
of LINKed structures is to be detected, it is predicted that Japanese 
relatives are not sensitive to “islands”: that is, a head noun may be 
associated with a gap across an island boundary [12]. Thus, as shown in 
(39), the head noun hito (= ‘man’) may be associated with the subject 
gap of kau (= ‘buy’) even though this association crosses a complex NP 
island boundary that is formed by Ka-tta tokei.  
 
(39) [[Ka-tta tokei]-ga    nisemonoda-tta hito]-ga nai-ta. 
 [[buy-PAST watch]-NOM fake-PAST      man]-NOM cry-PAST 

‘A man such that a watch he bought was a fake cried.’  
 
One may wonder whether the use of the operator <D> in LINK 
INTRODUCTION is a stipulation, but there is a rationale. As has been 
assumed, verbs in Japanese provide a propositional skeleton where 
argument slots are decorated with meta-variables, and saturation of 
meta-variables is not structurally constrained. So, LINK I NTRODUCTION 
is defined with the operator <D>, which models the weakest dominance 
relation, so that the label <D>(Fo(α)) and the primitive action 
put(?∃x.Fo(x[α]), ?Ty(e)) ensure that a term which will inhabit a node 
for a head noun may be found “deep inside” the relative clause 
structure (i.e. across a LINK relation). 

5 Conclusion 

This article has pointed out that the extant DS account of complex NPs 
in verb-final languages, especially Japanese relatives, is not adequate in 
that it multiplies unfixed relations with the same locality restriction. 
This formal problem disappears if node-addresses are specified 
flexibly. To this end, the AXIOM  and LINK INTRODUCTION are 
modified and tested against a range of data posed by Japanese relatives.  

In closing, it should be noted that the refined DS parser is more 
realistic than the past DS parser [2, 9, 13]. In the previous account, 
some sort of “look ahead” device needs to be assumed: that is, a parser 
must foresee that an incoming string has an embedded clause and run 
GENERALIZED ADJUNCTION before it starts to process the string. 
Although it was suggested that intonational cues were available to the 
parser, such cues would not obtain until a verb within a relative clause 
is parsed. By contrast, the parser proposed in this article may start to 
process a string without executing GENERALIZED ADJUNCTION in 
advance because an initial node set out by the AXIOM  does not have to 
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be a root node of the whole tree and it may be developed by the parse 
of an embedded clause. This account makes use of intonational cues 
more effectively in order to saturate Tn(U), an underspecified node-
address.13  
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