
IJCLA VOL. 4, NO. 1, JAN-JUN 2013, PP. 55–77
RECEIVED 26/11/12 ACCEPTED 11/01/13 FINAL 29/03/13

Structural Underspecification and Resolution
within a Processing-oriented Grammar Formalism

TOHRU SERAKU

University of Oxford, UK

ABSTRACT

A challenge to modeling incrementality in language processing
is posed by complex NPs in some verb-final languages, where a
parser does not see whether a clause that a parser currently
processes is part of a complex NP and how deeply it is
embedded. These indeterminacies are handled by structural
underspecification and resolution within Dynamic Syntax. This
article points out that the previous implementation of the
mechanism faces a formal problem of introducing
indistinguishable nodes into the tree, and proposes a solution
by letting a parser determine node-addresses flexibly. Concrete
analyses are given to Japanese relatives as a case of complex
NPs in verb-final languages.

KEYWORDS: Dynamic Syntax, incrementality, Japanese,
relative clauses

1 Introduction

A central issue in recent processing studies is whether the incremental
parsing thesis holds of verb-final languages. Despite initial negative
suggestions [14], there has been a growing body of research pointing to
a conclusion in which the answer is positive [6]. From a parser’s point
of view, particularly challenging are complex NPs (e.g. NP with a
relative clause, NP with an appositive clause) in some verb-final

TOHRU SERAKU 56

languages such as Japanese and Korean: a complex NP in these
languages consists of a clause ending with a verb and a head noun
following the clause. So, in processing a clause, a parser does not see in
advance (a) whether the current clause is a main clause or part of a
complex NP and, if it is part of a complex NP, (b) how deeply it is
embedded.

These two indeterminacies are illustrated by the Japanese strings (1,
2, 3). First, as shown in (1), argument NPs in Japanese may be dropped
when they are identifiable contextually. The parentheses in (1) indicate
that Mary-ga and hon-o may be dropped.

(1) (Mary-ga) (hon-o) ka-tta.

(Mary-NOM) (book-ACC) buy-PAST
‘Mary bought a book.’

In Japanese, a relative clause precedes a head noun. Thus, the relative
clause Mary-ga ka-tta in (2) is identical to the string (1) if hon-o is
dropped in (1).

(2) [[Mary-ga ka-tta] hon]-wa omoshiroi.

[[Mary-NOM buy-PAST] book]-TOP interesting
‘A book which Mary bought is interesting.’

Note that the string (2) contains no morpheme that marks a relative
clause.1 Thus, a parser, which processes Mary, cannot see whether
Mary belongs to a relative clause as in (2) or a matrix clause as in (1).
Further, as demonstrated in (3), a parser, which has processed the
complex NP string Nai-ta otoko, is still unable to see whether this
complex NP belongs to a matrix clause or, as in (3), it is part of a larger
complex NP.

(3) [[Nai-ta otoko]-o nagusame-ta hito]-ga

nige-ta
[[cry-PAST man]-ACC comfort-PAST person]-NOM
run.away-PAST
‘A person who comforted a man who cried ran away.’

1 It is reported that a verb in a relative clause in Japanese has a special

intonation [13]. This intonational cue, however, is not available until a parser
processes the verb kau (= ‘buy’) in (2). In Korean, the verbal suffix -u(n)
indicates a relative clause [17], but, once again, this morphological cue is not
available until a parser processes a verb.

STRUCTURAL UNDERSPECIFICATION AND RESOLUTION 57

An appropriate parser for Japanese must be flexible enough to
accommodate these two indeterminacies.

A reasonable method of handling such indeterminacies is to
introduce structural indeterminacies to trees. This idea is implemented
within Dynamic Syntax (DS) [2, 8, 10] as structural underspecification
and resolution. This is intuitively plausible, but, as will be pointed out,
the previous analysis [2, 9, 13] ends up inducing indistinguishable
nodes into the tree. This constitutes a rather serious problem because it
overturns a principal basis for explaining diverse linguistic data (Greek
clitics [3], Japanese clefts [16]) and it prevents the DS modeling of
English dialogue [15] from being applied to Japanese dialogue. In
short, complex NPs in verb-final languages such as Japanese offer a
good test case for evaluating the DS formalism.

The aim of this article is to point out a formal problem that the
extant DS treatment of complex NPs suffers from and to propose a
solution by letting a parser determine node-addresses flexibly. The
refined DS parser, it is argued, provides a more realistic model of
language understanding in that a “look ahead” mechanism may be
avoided and that intonational cues are more effectively utilized. To
illustrate this point, the article examines Japanese relatives as a case of
complex NPs in verb-final languages.

2 Dynamic Syntax

Dynamic Syntax (DS) is a grammar formalism that models knowledge
of language; thus, DS is a theory of competence and regarded as
generative grammar in the sense explicated by Noam Chomsky [4].
Unlike mainstream generative grammar, however, knowledge of
language, or competence, is defined as a set of constraints on language
performance, more specifically, the building-up of interpretation in
context [2, 8, 10]. With such constraints, a parser processes a string of
words left-to-right, and builds up semantic representation
incrementally, without a separate level of syntactic structure: “syntax”
within DS is no more than a set of constraints on how to build up a
semantic tree progressively in context.

TOHRU SERAKU 58

2.1 Trees and Tree Descriptions

The aim of a parser is to construct a semantic tree that represents an
interpretation of a string in context on the basis of word-by-word
processing. Trees in DS are binary, an argument node being on the left
and a functor node being on the right. Each node is decorated with a
declarative unit, consisting of a formula and labels.2 A formula is
semantic content at a node, and labels indicate various properties of the
content; one example of labels is a logical type, which indicates the
combinatorial property of the content. A formula is represented with
the predicate Fo, whose argument comes from DFo = {Tom’, run’, …}.
Content of some lexical items is not an element in DFo; for instance, the
content of she is a place-holding variable U, called “meta-variable”,
whose value is supplied contextually. A logical type is represented with
the predicate Ty, whose argument comes from DTy = {e, t, e→t, …}.
DTy is a finite set (for instance, it does not include a type for five-place
predicates), and no operations are stipulated to generate types, such as
type-lifting and composition of functors. For example, the parse of Tom
runs gives rise to the semantic tree (4); for the sake of simplicity, tense
is ignored throughout this article.

(4) {…, Fo(run’(Tom’)), Ty(t)}

{…, Fo(Tom’), Ty(e)} {…, Fo(run’), Ty(e→t)}

The notation “…” in each declarative unit indicates additional labels

which are not explicitly shown here. Another example of labels is a
decoration in LOFT (Logic Of Finite Trees [1]). This is a language to
talk about trees, which enables a parser to describe the other nodes in
the tree from the perspective of a current node. LOFT-operators are
defined as follows. First, there are operators to model an immediate
dominance relation: <↓0> is for argument daughters and <↓1> for
functor daughters. For instance, <↓0>Ty(e) indicates that the argument
daughter is of type-e; this label holds at the top node in (4). The
inverses, <↑0> and <↑1>, describe a mother node from the perspective
of an argument node and from the perspective of a functor node,
respectively. Second, operators with the Kleene star * model a
dominance relation. <↓*> describes a node somewhere below the
current node, together with its inverse, <↑*>. These operators may
describe a node at an arbitrary distance, but not across a “LINK”
relation. Third, the “down” operator <D> and the “up” operator <U>
model the weakest relation and may describe a node across a “LINK”
relation. Finally, <L> and its inverse <L-1> describe a node within

2 Formally, DS structure is represented by a set of declarative units, where

their relations are governed by LOFT (Logic Of Finite Tree) [1].

STRUCTURAL UNDERSPECIFICATION AND RESOLUTION 59

another structure that is LINKed from/to a current node. (For LINK
relations, see Section 2.4.)

Another type of label is a node identifier, Tn(a), where Tn is a tree-
node predicate. If a node is annotated with Tn(a), Tn(a0) indicates its
argument daughter, and Tn(a1) indicates its functor daughter. A root
node is marked by Tn(0), its argument daughter being by Tn(00) and its
functor daughter being by Tn(01). Thus, the declarative unit at the root
node in (4) is more precisely as in (5).

(5) {…, Tn(0), <↓0>Tn(00), <↓1>Tn(01), Fo(run’(Tom’)), Ty(t), ♢}

This declarative unit contains a pointer ♢. In a DS tree, there always
exists a single node that is under development. Such an active node is
marked by a pointer ♢.

In non-final states, a tree is a “partial” structure in the sense that
there exists a node decorated with a set of “requirements”. A tree is
said to be well-formed iff there are no outstanding requirements, and a
string is said to be grammatical iff there exists a tree update that leads
to a well-formed tree. A requirement is notated as the label ?α at a node,
which requires that α will hold at the node. For instance, ?Ty(e)
requires that the node will be decorated with Ty(e). Every node is
introduced with requirements and every single tree-update is driven by
some form of requirements. A parser runs a set of actions in order to
satisfy requirements, as we shall see in the next sub-section.

2.2 Actions for Tree Updates

Trees grow progressively on the basis of left-to-right processing of a
string in context without postulating an independent level of syntactic
structure. The starting point of tree update is determined by the AXIOM ,
which introduces an initial node with the following declarative unit:

(6) {?Ty(t), ♢}

?Ty(t) requires that this node will be of type-t. This requirement
corresponds to the parser’s goal to build up an interpretation of a string:
in this sense, tree growth is goal-directed. As a string is processed
word-by-word, the initial node becomes increasingly richer: it is
updated gradually and monotonically by a combination of general,
lexical, and pragmatic actions.3

3 In earlier works [10], the initial node is also annotated with Tn(a), an

arbitrary node-address. Tn(a) is not articulated in recent works [2, 8], the

TOHRU SERAKU 60

First, general actions are a set of actions that are stored in the DS
system and that are not lexicalized. Each general action is formulated
as a program, or a sequence of instructions to update a tree. Instructions
are in the conditional format (7).

(7) IF … (“…” is a condition to be met by a node

 highlighted by ♢)
THEN … (“…” is an action to be run if the condition is met)
ELSE … (“…” is an action to be run if the condition is not

 met)

The application of general actions is optional: a parser may run general
actions at any time as long as the IF block is met by an active node.
Examples of general actions will be presented in the next sub-section.

Second, lexical actions are a set of actions that are stored in the DS
system and that are lexicalized. Lexical items also encode a sequence
of instructions to update a tree, but lexical actions differ from general
actions in terms of optionality: a package of actions encoded in a
lexical item α must be run every time α is parsed. For instance, inu (=
‘dog’) encodes the macro of actions (8), where put(α) is a primitive
action to decorate a node with α.

(8) IF ?Ty(e)

THEN put(Fo(ε, x, inu’(x)), Ty(e))
ELSE ABORT

Thus, (8) declares that if a current node is decorated with ?Ty(e), a
parser annotates the node with Fo(ε, x, inu’(x)) and Ty(e). ABORT in
the ELSE block ensures that this action cannot be executed unless the
IF block is met. In (8), (ε, x, inu’(x)) is a type-e term that denotes a
dog, expressed in Epsilon Calculus.4 As shown in (1), argument NPs in

assumption being that the node introduced by the AXIOM is a root node of the
whole tree. In Section 4, I shall modify the AXIOM so that it introduces a
node that is underspecified for a node-address.

4 Epsilon Calculus is a formal study of arbitrary names in natural deduction in
Predicate Logic, proposed by David Hilbert. Every quantified NP is mapped
onto an epsilon term, a type-e term defined as a triple: an operator, a
variable, and a restrictor. In the case of (ε, x, inu’(x)), the existential operator
ε binds the variable x that is restricted by the predicate inu’. This term stands
for an arbitrary witness of the Predicate Logic formula ∃x.inu’(x). Since
quantified NPs are uniformly analyzed as type-e terms, a quantified NP at an
object position is handled without assuming type-shifting or quantifier
movement [5]. A scope relation is expressed in a scope statement, where
each term is in a dependency relation to others. This statement is constructed
gradually as quantified NPs are parsed. Once a complete statement arises,

STRUCTURAL UNDERSPECIFICATION AND RESOLUTION 61

Japanese may be dropped. Thus, verbs encode a macro of actions to
build up a propositional skeleton with argument slots. If NPs are
dropped, such slots are contextually assigned content; if NPs have been
processed, such slots collapse with the nodes that have been created by
the parse of these NPs (cf. Section 3).

Third, pragmatic actions are a set of actions whose schematic rule-
structures are stored in the DS system but whose execution involves
pragmatic inference. A case of pragmatic actions pertinent to the
present article is SUBSTITUTION, which saturates a meta-variable. For
instance, the parse of he puts a meta-variable Fo(UMALE) at a node, with
a requirement that the node will be annotated with a formula denoting a
male. This requirement drives SUBSTITUTION, replacing the variable
with a content denoting a male with reference to contextual factors.
SUBSTITUTION resolves underspecification in content. This is a quite
familiar process in linguistics, but DS assumes another, less familiar
form of underspecification: underspecification of structural relation.

2.3 Structural Underspecification and Resolution

Within DS, a node may be initially unfixed and resolved later. There
are three types of general actions to induce unfixed relations with
different locality restrictions:

(9) a. LOCAL *A DJUNCTION: to induce a node that is “locally”

 unfixed
b. *ADJUNCTION: to induce a node that is “non-locally”

 unfixed
c. GENERALIZED ADJUNCTION: to induce a node that is

 “globally” unfixed

These general actions may be run only if a pointer ♢ is at a type-t-
requiring node; so, unfixed nodes are always hung from a type-t-
requiring node.

First, LOCAL *A DJUNCTION induces an unfixed node that must be
fixed within a local proposition. This node is decorated with
<↑0><↑1*>?Ty(t). This means that if a pointer ♢ moves up from an
argument node (and possibly keeps going through functor nodes), then
a parser finds a type-t-requiring node. For instance, <↑0><↑1*>?Ty(t)
may be <↑0>?Ty(t), <↑0><↑1>?Ty(t), <↑0><↑1><↑1>?Ty(t), and so on.

every term in a proposition is “evaluated”: it reflects the full scope relation
into the restrictor of that term. Since this evaluation process is not pertinent,
it is disregarded in this article.

TOHRU SERAKU 62

Given this restricted dominance relation, the node is fixed under the
closest type-t-requiring node. If a pointer crosses a type-t-requiring
node, the relation includes more than one <↑0>, as in
<↑0><↑1><↑1><↑0>?Ty(t), which contradicts <↑0><↑1*>?Ty(t). This
unfixed relation is resolved by a case particle. For instance, the lexical
action encoded in the nominative-case particle ga puts the label
<↑0>?Ty(t) at an unfixed node, fixing it as a subject node under the
closest type-t-requiring node.

Second, *ADJUNCTION induces an unfixed node that may be
resolved at any node as long as the unfixed relation does not cross a
LINK relation. Such nodes are marked by <↑*>?Ty(t), which ensures
that a pointer may cross a type-t-requiring node. This non-local unfixed
relation cannot be resolved lexically. For instance, the accusative-case
particle o narrows down possible fixed positions to a set of object
nodes, each under some type-t-requiring node, but it does not specify a
unique position. However, this unfixed relation may be resolved by the
general action UNIFICATION: ?Ty(α)-unfixed node unifies with a Ty(α)-
fixed node, as a result of which the fixed node is annotated with the
union of the two declarative units.

Third, GENERALIZED ADJUNCTION induces a node that is wholly
unfixed (i.e. may be across a LINK boundary). This globally unfixed
relation is modeled by decorating the unfixed node with <U>?Ty(t),
where the “up” operator <U> models a dominance relation across a
LINK relation, allowing a pointer ♢ to move up and to cross a LINK
boundary (cf. Section 2.1). An unfixed node induced by GENERALIZED
ADJUNCTION may not be resolved by the parse of case particles for the
same reason as stated in the last paragraph.

2.4 LINK Relations

Within DS, two structures may be built up in tandem, one of which is
LINKed to the other. LINK is a relation between two structures that
share a formula, and it is used for modeling, among other things,
relatives in the following manner: a parser builds up an adjunct
structure and LINKs the top node of the adjunct structure to a fresh
node in an emergent main structure; a parser enriches this fresh node
with the content of the adjunct structure. In this course of LINK
transitions there are two crucial steps.

First, the general action LINK INTRODUCTION induces a LINK
relation between a top node in an adjunct structure and a new type-e-
requiring node in an emergent main structure. From the perspective of a
node in a main structure, the top node of an adjunct structure may be
described by the operator <L> (cf. Section 2.1). So, the label <L>α at a
node in a main structure declares that if a parser looks at a LINKed
node in an adjunct structure, the LINKed node is annotated with α.

STRUCTURAL UNDERSPECIFICATION AND RESOLUTION 63

Given the inverse operator <L-1>, the following relation holds:
<L-1>Tn(a) ⇔ Tn(aL).

(10) LINK INTRODUCTION

IF Ty(t), <D>(Fo(α))
THEN make(<L-1>); go(<L-1>); put(?∃x.Fo(x[α]), ?Ty(e))
ELSE ABORT

In (10), make and go are primitive actions concerning a node creation
and a pointer movement, respectively. The IF block requires that a
current node be of type-t and that a node somewhere below this node be
decorated with Fo(α), where α is an arbitrary type-e term.5 The THEN
block requires that, if the IF block is satisfied, a parser initiate an
inverse LINK relation from the current node to a fresh node in an
unfolding main structure, and decorate the node with the requirements:
?∃x.Fo(x[α]) and ?Ty(e). ?∃x.Fo(x[α]) requires that this node will be
decorated with a term that contains α as a sub-term; this ensures that
the two LINKed structures share a term α.

Second, the fresh node in an emergent main structure is decorated by
a head noun, and enriched with the content of the adjunct structure.
This enrichment process is formulated as the general action LINK
EVALUATION .

(11) LINK EVALUATION

IF Ty(e), Fo(ε, y, φ(y))

 THEN IF <L>(Fo(ψ[(ε, x, P(x))]))
 THEN put(Fo(ε, y, φ(y)&ψ[y/(ε, x, P(x))]))
 ELSE ABORT

 ELSE ABORT

(ε, y, φ(y)) is the content of a head noun, and ψ is the content of a
relative clause, where (ε, x, P(x)) is the content of a gap in the relative
clause. A parser reflects ψ into the term (ε, y, φ(y)) as an additional
restrictor by re-binding (ε, x, P(x)) in ψ with the variable y, as in (ε, y,
φ(y)&ψ[y/(ε, x, P(x))]). As a consequence, this composite term denotes
an entity that satisfies not only the description of the head noun but also
the description of the relative clause.

5 In the previous work [9], the operator with the Kleene-star ↓* (instead of the

“down” operator <D>) was used. This article presents LINK INTRODUCTION
by replacing ↓* with <D>. This is because Japanese relatives are not sensitive
to islands, as will be pointed out in Section 4.4. The next section shows that,
even if this modification is made, the present version of LINK
INTRODUCTION is not adequate.

TOHRU SERAKU 64

3 The Problem

Let us outline the previous DS account of Japanese relatives [2, 9, 13].
Consider (12), where the head noun otoko (= ‘man’) is preceded by the
relative clause Nai-ta.

(12) [Nai-ta otoko]-ga nige-ta.

 [cry-PAST man]-NOM run.away-PAST
‘A man who cried ran away.’

In this earlier view, the AXIOM induced the initial node (6). Since naku
(= ‘cry’) may belong to an embedded structure of an arbitrary depth, a
parser introduced a globally unfixed type-t-requiring node by running
GENERALIZED ADJUNCTION. This unfixed relation is shown by the
dotted line in (13). Under this node, a parser ran the lexical actions
encoded in naku, constructing a propositional template with a subject
slot. Since no argument NPs had been parsed, a parser annotated this
subject slot with the term (ε, x, P(x)), where P is an abstract predicate.6

(13) Parsing Nai-ta7

 {?Ty(t)}

{Fo(naku’(ε, x, P(x))), Ty(t), <D>(Fo(ε, x, P(x))), ♢}

{Fo(ε, x, P(x)), Ty(e)} {Fo(naku’), Ty(e→t)}

Then, in order to parse the head noun otoko, a parser executed LINK
INTRODUCTION, initiating an inverse LINK relation from the type-t
node to a new type-e-requiring node in an unfolding main structure, as
shown by the curved arrow in (14). This node was also globally unfixed
with respect to the root node since it might turn out to be part of a
larger structure.

6 In some previous accounts [2, 13], the node for a gap is notated as a variable.

But this article follows a more recent account [9] in decorating the node with
a term involving an abstract predicate P. However, this is just for expository
purposes, and the analysis to be proposed in Section 4 may be recast in line
with the previous accounts [2, 13].

7 In this and subsequent trees, only relevant labels are expressed in declarative
units.

STRUCTURAL UNDERSPECIFICATION AND RESOLUTION 65

(14) Parsing Nai-ta + LINK INTRODUCTION
 {?Ty(t)}

{?∃y.Fo(y[(ε, x, P(x))]), ?Ty(e), ♢}

{Fo(naku’(ε, x, P(x))), Ty(t), <D>(Fo(ε, x, P(x)))}

{Fo(ε, x, P(x)), Ty(e)} {Fo(naku’), Ty(e→t)}

The current node in (14) was then decorated by the parse of the head
noun otoko, and enriched by LINK EVALUATION . The resulting
declarative unit is shown in (15).

(15) {Fo(ε, y, otoko’(y)& naku’(y)), Ty(e), ♢}

This type-e node was fixed as a subject by the parse of the nominative-
case particle ga. The parse of nigeru (= ‘run away’) then created a main
structure, where the type-e node decorated with the declarative unit
(15) was identified as a subject node.

Notice that the previous DS account ends up with two unfixed nodes
of the same type hung from the same node, as shown by the two dotted
lines in (14). That is, the AXIOM set out an initial node as the root node
of the whole tree, and with respect to this root node two unfixed nodes
were introduced for the relative clause and for the head noun. But
multiplication of unfixed relations is not licit: in Logic Of Finite Trees
[1], each node must be uniquely identifiable with respect to the other
nodes in a tree; but if two unfixed nodes with the same locality
restriction were hung from the same node, they would be
indistinguishable and cannot be uniquely defined in the tree.8

More than one unfixed node, however, may be hung from the same
node if they are of different sorts. Recall that there are three types of
locality restrictions on unfixed relations and that they differ in terms of
where an unfixed node may be resolved (cf. Section 2.3). This means
that if two unfixed nodes have different locality restrictions, they are
distinguishable and may be introduced from the same node. In (14),
however, the two unfixed relations are both globally unfixed and
cannot be distinguished. Thus, the tree (14) is formally illegitimate, and

8 “Structural underspecification and resolution” is formally similar to

“functional uncertainty” within LFG [7], but it seems there is no LFG
analogue of the unique-unfixed-node constraint; a functional uncertainty for
FOCUS may have more than one solution if the value is a set, each member of
the set being associated with different values [11] (Mary Dalrymple p.c.).

TOHRU SERAKU 66

it is concluded that the previous DS account of Japanese relatives [2, 9,
13] is inadequate.

The problem of multiplying unfixed relations occurs generally in the
DS treatment of complex NPs in verb-final languages such as Japanese
and Korean. This is because a modifier (e.g. relative clause) in these
languages precedes a head noun, and the head noun could be part of a
larger complex NP. The challenge is how a parser processes complex
NPs incrementally in these languages without multiplying unfixed
relations with the same locality restriction.

4 Solution

This section proposes a solution to the problem raised in the last
section. The heart of the proposal is to let a parser determine node-
addresses flexibly. To this end, I shall drop the assumption that the
AXIOM introduces a root node of the whole tree and that a head noun is
processed with respect to this root node.

Firstly, the AXIOM is modified so that it introduces a node decorated
with not only the type requirement ?Ty(t) but also the node-address
requirement ?∃x.Tn(x), together with a place-holding variable for a
node-address, as in Tn(U).

(16) AXIOM (modified)

{Tn(U), ?∃x.Tn(x), ?Ty(t), ♢}

The meta-variable U may be substituted with 0, in which case the node
is identified as a root node. Alternatively, it may be substituted with an
arbitrary constant “a”, whose actual manifestation will be determined at
a later step (cf. Section 4.1).9

Second, LINK INTRODUCTION is modified as in (17), where the
essential point is that a node for a head noun is structurally
underspecified with respect to a new type-t-requiring node. In plain
English, (17) declares the following: if a node is of type-t and decorated
with a proposition involving a term α, a parser initiates an inverse
LINK relation from this propositional node to a type-e-requiring node;
this type-e-requiring node is annotated with the requirement that this
node will be annotated with a term containing α as a sub-term; a parser

9 The use of meta-variables in modeling an underspecification of node-address

is inspired by Ronnie Cann, and the use of arbitrary constants to saturate
such meta-variables is suggested by Ruth Kempson. I am grateful for
insightful discussions I have had with them.

STRUCTURAL UNDERSPECIFICATION AND RESOLUTION 67

structurally underspecifies this type-e-requiring node with respect to a
new type-t-requiring node.10

(17) LINK INTRODUCTION (modified)

IF Ty(t), <D>(Fo(α))
THEN make(<L-1>); go(<L-1>); put(?∃x.Fo(x[α]), ?Ty(e));

make(<↑*>); go(<↑*>);
put(Tn(U), ?∃x.Tn(x), ?Ty(t)); go(<↓*>)

ELSE ABORT

4.1 Illustration One: Simple Cases of Relatives

For illustration, let us consider the simple case of relatives (12),
repeated here as (18).

(18) [Nai-ta otoko]-ga nige-ta.

 [cry-PAST man]-NOM run.away-PAST
‘A man who cried ran away.’

An initial node is set out by the modified AXIOM . Unlike the previous
DS account [2, 9, 13], a parser may process the relative clause Nai-ta
directly under this initial node.

(19) Parsing Nai-ta

{Tn(U), ?∃x.Tn(x), Fo(naku’(ε, x, P(x))), Ty(t), <D>(Fo(ε, x, P(x))), ♢}

{Fo(ε, x, P(x)), Ty(e)} {Fo(naku’), Ty(e→t)}

If the string ended here, a parser would identify the top node as a root
node of the tree by saturating Tn(U) as Tn(0). In (18), however, Nai-ta
is a relative clause.11 Further, it is unknown at this point how deeply

10 The locality restriction on this type-e-requiring unfixed node is the same as

that imposed by *ADJUNCTION. This is because a head noun may be long-
distance scrambled; for the detail, see a DS account of long-distance
scrambling [2].

11 When the verb naku appears in a relative clause, it has a special intonation
[13] (cf. Section 1). This intonational cue cannot be made use of in the
previous analysis [2, 9, 13], where GENERALIZED ADJUNCTION had to fire
before the parse of relative clauses. By contrast, in my analysis, a parser does
not run GENERALIZED ADJUNCTION, and may process a relative clause

TOHRU SERAKU 68

the relative clause is embedded. Thus, a parser substitutes Tn(0) with
Tn(a), where “a” is an arbitrary constant whose manifestation is worked
out at a later step. A parser then runs LINK INTRODUCTION (17) in
order to create a node for the head noun otoko (= ‘man’). At this stage,
the tree has been updated as in (20), where a triangle schematizes the
internal structure.

(20) Parsing Nai-ta + LINK INTRODUCTION

 {Tn(U), ?∃x.Tn(x), ?Ty(t)}

{?∃y.Fo(y[(ε, x, P(x))]), ?Ty(e), ♢}

{Tn(a), Fo(naku’(ε, x, P(x))), Ty(t), <D>(Fo(ε, x, P(x)))}

In (20), the current node is non-locally unfixed with respect to a new
type-t-requiring node (cf. footnote 10). This non-local unfixed relation
is shown by the dashed line.

Now that a type-e-requiring node is present, a parser may process
the head noun otoko (= ‘man’), decorating the node with content and
type, and LINK EVALUATION then incorporates the content of the
relative clause into the node.

(21) Parsing Nai-ta otoko + LINK EVALUATION

 {Tn(U), ?∃x.Tn(x), ?Ty(t)}

 {Fo(ε, y, otoko’(y)& naku’(y)), Ty(e), ♢}

 {Tn(a), Fo(naku’(ε, x, P(x))), Ty(t), <D>(Fo(ε, x, P(x)))}

The rest of the process is as usual: the nominative-case particle ga
marks the current node in (21) as a subject node, and the matrix verb
nigeru (= ‘run away’) fleshes out a main propositional structure, where
the subject node is identified as the node for the head noun. Finally, a
parser saturates Tn(U) at the top node as Tn(0), ensuring that this is a
root node. Once this node-address is specified, the actual manifestation

directly under an initial node set out by the AXIOM . The intonational cue then
helps the parser to saturate Tn(U) at the initial node as Tn(a).

STRUCTURAL UNDERSPECIFICATION AND RESOLUTION 69

of the arbitrary constant “a” in Tn(a) is automatically explicated as
Tn(00L).

(22) Parsing [Nai-ta otoko]-ga nige-ta

 {Tn(0), Fo(nigeru’(ε, y, otoko’(y)& naku’(y))), Ty(t), ♢}

 {Fo(ε, y, otoko’(y)& naku’(y)), Ty(e)} {Fo(nigeru’), Ty(e→t)}

{Tn(00L), Fo(naku’(ε, x, P(x))), Ty(t), <D>(Fo(ε, x, P(x)))}

Notice that in the tree update above, no multiple unfixed nodes have
been induced. This is because a node for a head noun is structurally
underspecified with respect to a new type-t-requiring node that may be
distinct from the root node of the whole tree.

The account is also applicable to (23), where, unlike (18), part of the
matrix clause (i.e. Tom-ga) is processed before the relative clause nai-
ta.

(23) Tom-ga [nai-ta otoko]-o nagusame-ta.

 Tom-NOM [cry-PAST man]-ACC comfort-PAST
‘Tom comforted a man who cried.’

Again, an initial node is set out by the AXIOM (16), and after LOCAL

*A DJUNCTION creates a type-e-requiring unfixed node, Tom decorates
the node with content and type and ga fixes it as a subject node. Since
Tom-ga is part of a matrix clause, Tn(U) may be saturated as Tn(0), a
node-address for a root node of the whole tree.

(24) Parsing Tom-ga

 {Tn(0), ?Ty(t), ♢}

 {Fo(Tom’), Ty(e)}

What comes next is naku (= ‘cry’). A parser would develop the current
propositional structure if naku were a matrix verb. In (23), an
intonational break between Tom-ga and nai-ta signals that naku is an
embedded verb, and a parser runs GENERALIZED ADJUNCTION to induce

TOHRU SERAKU 70

a globally unfixed type-t-requiring node.12 The lexical actions encoded
in naku flesh out this type-t-requiring node, providing a propositional
template where a subject slot is decorated with the term (ε, x, P(x)), as
usual.

(25) Parsing Tom-ga nai-ta + GENERALIZED ADJUNCTION

 {Tn(0), ?Ty(t)}

 {Fo(Tom’), Ty(e)}

{Fo(naku’(ε, x, P(x))), Ty(t), <D>(Fo(ε, x, P(x))), ♢}

 {Fo(ε, x, P(x)), Ty(e)} {Fo(naku’), Ty(e→t)}

A parser runs LINK INTRODUCTION, initiating an inverse LINK relation
to a type-e-requiring node that is unfixed with respect to a fresh type-t-
requiring node.

(26) Parsing Tom-ga nai-ta + LINK INTRODUCTION

 {Tn(0), ?Ty(t)} {Tn(U), ?∃x.Tn(x), ?Ty(t)}

 {Fo(Tom’), Ty(e)} {?∃y.Fo(y[(ε, x, P(x))]), ?Ty(e), ♢}

{Fo(naku’(ε, x, P(x))), Ty(t), <D>(Fo(ε, x, P(x)))}

The rest of the process is as usual: (a) the head noun otoko decorates
the current node with content and type; (b) LINK EVALUATION
incorporates the content of the relative clause into the node for the head
noun; (c) the accusative-case particle o marks this node as an object
under the type-t-requiring node; (d) the matrix verb nagusameru
(= ‘comfort’) develops this type-t-requiring node by providing a
propositional schema, where the object slot collapses with the node for
the head noun and the subject slot is decorated with a meta-variable as
in Fo(V).

12 Here, *ADJUNCTION cannot fire because this general action requires that a

current node not have any dominated node. In the present case, the current
node has a dominated node (i.e. the node decorated with Fo(Tom’)).

STRUCTURAL UNDERSPECIFICATION AND RESOLUTION 71

(27) Parsing Tom-ga [nai-ta otoko]-o nagusame

{Tn(U), ?∃x.Tn(x), ?Ty(t), ♢}

 {Fo(V), Ty(e)} {?Ty(e→t)}

 {Fo(nagusameru’), Ty(e→(e→t))}
{Fo(ε, y, otoko’(y)& naku’(y)), Ty(e)}

 {Tn(0), ?Ty(t)}

{Fo(Tom’), Ty(e)}

{Fo(naku’(ε, x, P(x))), Ty(t), <D>(Fo(ε, x, P(x)))}

Now, a parser may saturate Tn(U) at the current node as Tn(0). As a
result, this node is identified with the node set out by the AXIOM .
Concomitantly, the node decorated with Fo(V) collapses with the node
decorated with Fo(Tom’). (Recall that the dotted line indicates a
globally unfixed relation, which may cross a LINK boundary.) For
reasons of space, only the declarative unit at the root node is provided
here as (28), which correctly represents the truth-conditional content of
the string (23).

(28) {Tn(0), Fo(nagusameru’(ε, y, otoko’(y)& naku’(y))(Tom’)),

Ty(t), ♢}

4.2 Illustration Two: Relative Clause Nesting

In the present account, a node for a head noun is structurally
underspecified within a new propositional structure, and once this
propositional structure is fully developed a parser may run LINK
INTRODUCTION to induce another inverse LINK relation. Thus, the
account naturally models successive relative clause embedding without
failing to capture the left-to-right processing of the sequence. To
illustrate, consider the case of relative clause nesting as in (29), where
the complex NP Nai-ta otoko (= ‘a man who cried’) is part of the
relative clause that modifies the head noun hito (= ‘person’).

(29) [[Nai-ta otoko]-o nagusame-ta hito]-ga

nige-ta

TOHRU SERAKU 72

[[cry-PAST man]-ACC comfort-PAST person]-NOM
run.away-PAST
‘A person who comforted a man who cried ran away.’

The parse of this string up to otoko (= ‘man’) gives rise to the same tree
as (21). The unfixed node for otoko is marked as an object node by the
accusative-case particle o. Then, nagusameru (= ‘comfort’) provides a
propositional template; an object slot collapses with the node for otoko,
and a subject slot is decorated with Fo(ε, y, Q(y)). At this stage, a
parser may run LINK INTRODUCTION once again in order to parse the
head noun hito, initiating another inverse LINK relation from the
propositional node decorated with Fo(nagusameru’(c)(ε, y, Q(y))) to a
type-e-requiring node.

(30) Parsing [Nai-ta otoko]-o nagusame-ta + LINK INTRODUCTION

 {Tn(U), ?∃x.Tn(x), ?Ty(t)}

 {?∃y.Fo(z[(ε, y, Q(y))]), ?Ty(e), ♢}

{Tn(b), Fo(nagusameru’(c)(ε, y, Q(y))), Ty(t)}

 {Fo(ε, y, Q(y)), Ty(e)} {Fo(nagusameru’(c)), Ty(e→t)}

 {Fo(α), Ty(e)} {Fo(nagusameru’), Ty(e→(e→t))}

{Tn(a), Fo(naku’(ε, x, P(x))), Ty(t), <D>(Fo(ε, x, P(x)))}

 where α = (ε, y, otoko’(y)& naku’(y))

The rest of the process is as usual: (a) the current node is decorated by
the head noun hito; (b) LINK EVALUATION reflects the content of the
relative clause into the node for hito; (c) the node for hito is marked as
a subject by the nominative-case particle ga under a new type-t-
requiring node; (d) this type-t-requiring node is fleshed out by nigeru
(= ‘run away’), where the subject slot collapses with the node for hito;
(e) finally, Tn(U) at the top node is saturated as Tn(0), a node-address
for a root node of the whole tree. The declarative unit at the root node
is shown in (31).

(31) {Fo(nigeru’(ε, z, hito’(z)& nagusameru’(ε, y,

otoko’(y)& naku’(y))(z))), Tn(0), Ty(t), ♢}

STRUCTURAL UNDERSPECIFICATION AND RESOLUTION 73

4.3 Illustration Three: Scrambling of Complex NPs

Japanese allows the permutation of arguments, so-called “scrambling”.
Thus, a head noun modified by a relative clause may be fronted:
compare (23) with (32).

(32) [Nai-ta otoko]-o Tom-ga nagusame-ta.

 [cry-PAST man]-ACC Tom-NOM comfort-PAST
‘Tom comforted a man who cried.’

Scrambling is also dealt with by the present account. In (32), the parse
of the relative clause Nai-ta provides a propositional template, where a
subject slot is decorated with Fo(ε, x, P(x)), and LINK INTRODUCTION
initiates an inverse LINK relation from this type-t node to a type-e-
requiring unfixed node. This unfixed node is decorated by the head
noun otoko (= ‘man’) and enriched by LINK EVALUATION .

(33) Parsing Nai-ta otoko + LINK EVALUATION

 {Tn(U), ?∃x.Tn(x), ?Ty(t)}

{Fo(ε, y, otoko’(y)& naku’(y)), Ty(e), ♢}

{Tn(a), Fo(naku’(ε, x, P(x))), Ty(t), <D>(Fo(ε, x, P(x)))}

The current node is marked as an object node by the accusative-case
particle o. Then, a pointer ♢ goes up to the type-t-requiring node, where
Tom-ga induces a subject node and nagusameru (= ‘comfort’) creates a
propositional template, where a subject slot collapses with the node for
Tom. Finally, Tn(U) is saturated as Tn(0). The root node is decorated
with (34); this declarative unit is exactly the same as the one in (28),
which predicts that the string (32) is truth-conditionally equivalent to
the string (23).

(34) {Tn(0), Fo(nagusameru’(ε, y, otoko’(y)& naku’(y))(Tom’)),

Ty(t), ♢}

4.4 Illustration Four: Unbounded-Dependency and Island-Insensitivity

Japanese relatives exhibit “unbounded-dependency”: a head noun may
be associated with a gap in a relative clause across a clause boundary.

TOHRU SERAKU 74

Thus, in (35), the head noun otoko (= ‘man’) is associated with the
subject gap of naku (= ‘cry’) across the clause boundary Tom-ga … i-
tta.

(35) [[Tom-ga [nai-ta to] i-tta] otoko]-ga

 nige-ta.
[[Tom-NOM [cry-PAST COMP] say-PAST] man]-NOM

 run.away-PAST
‘A man who Tom said cried ran away.’

Prior to the head noun otoko, the parse of (35) leads to the semantic tree
(36).

(36) Parsing Tom-ga nai-ta to i-tta

{Tn(a), Fo(iu’(naku’(ε, x, P(x)))(Tom’)), Ty(t), <D>(Fo(ε, x, P(x))), ♢}

<D>(Fo(ε, x, P(x))) declares that the term (ε, x, P(x)) is found
somewhere below the current node (possibly, across a LINK boundary;
cf. Section 2.4.) Thus, the IF block of LINK INTRODUCTION is met and
a parser initiates an inverse LINK relation to a type-e-requiring node,
imposing a requirement that this node will be annotated with a term
containing (ε, x, P(x)) as a sub-term. This type-e-requiring node is
decorated by the head noun otoko (= ‘man’) and enriched by LINK
EVALUATION .

(37) Parsing Tom-ga nai-ta to i-tta otoko + LINK EVALUATION

 {Tn(U), ?∃x.Tn(x), ?Ty(t)}

 {Fo(ε, y, otoko’(y)& iu’(naku’(y))(Tom’)), Ty(e), ♢}

{Tn(a), Fo(iu’(naku’(ε, x, P(x)))(Tom’)), Ty(t), <D>(Fo(ε, x, P(x)))}

The current node is marked as a subject by the nominative-case particle
ga, and the matrix verb nigeru (= ‘run away’) creates a propositional
schema where a subject slot collapses with the node for otoko. The root
node in the final state is decorated with the declarative unit in (38).

(38) {Tn(0), Fo(nigeru’(ε, y, otoko’(y)& iu’(naku’(y))(Tom’))),

Ty(t), ♢}

STRUCTURAL UNDERSPECIFICATION AND RESOLUTION 75

Given the lack of restrictions on where the term to be shared in the pair
of LINKed structures is to be detected, it is predicted that Japanese
relatives are not sensitive to “islands”: that is, a head noun may be
associated with a gap across an island boundary [12]. Thus, as shown in
(39), the head noun hito (= ‘man’) may be associated with the subject
gap of kau (= ‘buy’) even though this association crosses a complex NP
island boundary that is formed by Ka-tta tokei.

(39) [[Ka-tta tokei]-ga nisemonoda-tta hito]-ga nai-ta.
 [[buy-PAST watch]-NOM fake-PAST man]-NOM cry-PAST

‘A man such that a watch he bought was a fake cried.’

One may wonder whether the use of the operator <D> in LINK
INTRODUCTION is a stipulation, but there is a rationale. As has been
assumed, verbs in Japanese provide a propositional skeleton where
argument slots are decorated with meta-variables, and saturation of
meta-variables is not structurally constrained. So, LINK I NTRODUCTION
is defined with the operator <D>, which models the weakest dominance
relation, so that the label <D>(Fo(α)) and the primitive action
put(?∃x.Fo(x[α]), ?Ty(e)) ensure that a term which will inhabit a node
for a head noun may be found “deep inside” the relative clause
structure (i.e. across a LINK relation).

5 Conclusion

This article has pointed out that the extant DS account of complex NPs
in verb-final languages, especially Japanese relatives, is not adequate in
that it multiplies unfixed relations with the same locality restriction.
This formal problem disappears if node-addresses are specified
flexibly. To this end, the AXIOM and LINK INTRODUCTION are
modified and tested against a range of data posed by Japanese relatives.

In closing, it should be noted that the refined DS parser is more
realistic than the past DS parser [2, 9, 13]. In the previous account,
some sort of “look ahead” device needs to be assumed: that is, a parser
must foresee that an incoming string has an embedded clause and run
GENERALIZED ADJUNCTION before it starts to process the string.
Although it was suggested that intonational cues were available to the
parser, such cues would not obtain until a verb within a relative clause
is parsed. By contrast, the parser proposed in this article may start to
process a string without executing GENERALIZED ADJUNCTION in
advance because an initial node set out by the AXIOM does not have to

TOHRU SERAKU 76

be a root node of the whole tree and it may be developed by the parse
of an embedded clause. This account makes use of intonational cues
more effectively in order to saturate Tn(U), an underspecified node-
address.13

ACKNOWLEDGMENTS. I have benefitted from constructive and
encouraging exchanges with Ronnie Cann, David Cram, Mary
Dalrymple, Ruth Kempson, and Jieun Kiaer. My deepest gratitude goes
to Ruth Kempson, who provided me with a number of valuable
comments on this work. Needless to say, the author alone is responsible
for any inadequacies in the present article. This research was supported
by the Clarendon Fund Scholarship, the Oxford-Kobe Scholarship, and
the Sasakawa Fund Scholarship.

References

1. Blackburn, P., Meyer-Viol, W.: Linguistics, Logic, and Finite Trees.
Bulletin of Interest Group of Pure and Applied Logics 2, 2-39 (1994)

2. Cann, R., Kempson, R., Marten, L.: The Dynamics of Language. Elsevier,
Oxford (2005)

3. Chatzikyriakidis, S., Kempson, R.: Standard Modern and Pontic Greek
person restrictions. Journal of Greek Linguistics 11, 127-166 (2011)

4. Chomsky, N.: Aspects of the Theory of Syntax. MIT Press, MA, Cambridge
(1965)

5. Heim, I., Kratzer, A.: Semantics in Generative Grammar. Blackwell, Oxford
(1998)

6. Kamide, Y.: Incrementality in Japanese sentence processing. In: Nakayama,
M. et al. (eds.) The Handbook of East Asian Psycholinguistics, Vol. 2,
Japanese. Cambridge University Press, Cambridge (2006)

7. Kaplan, R. M., Zaenen, A.: Long-distance dependencies, constituent
structure, and functional uncertainty. In: Baltin, M., Kroch, A. (eds.)

13 The mechanism proposed in this article has an implication for a cross-

linguistic modeling of relatives in verb-final languages. The AXIOM remains
invariant across languages, but it is possible that LINK INTRODUCTION is
realized in a different form in different languages. For instance, in Korean,
where the suffix -(u)n serves as a marker for relative clauses [17], the macro
of actions in LINK INTRODUCTION may be lexically encoded in the relative
clause marker. Further, the essential idea of the modified LINK

INTRODUCTION is to underspecify a node for a head noun within a new
propositional structure. This insight is quite general and may be made use of
when we define general actions for other types of complex NPs.

STRUCTURAL UNDERSPECIFICATION AND RESOLUTION 77

Alternative Conceptions of Phrase Structure. University of Chicago Press,
Chicago (1989)

8. Kempson, R., Gregoromichelaki, E., Howes, C.: The Dynamics of Lexical
Interfaces. CSLI, Stanford (2011)

9. Kempson, R., Kurosawa, A.: At the syntax-pragmatics interface. In: Hoshi,
H. (ed.) The Dynamics of Language Faculty. Kuroshio, Tokyo (2009)

10. Kempson, R., Meyer-Viol, W., Gabbay, D.: Dynamic Syntax. Blackwell,
Oxford (2001)

11. King, T. H.: Focus domains and information structure. In: Butt, M., King, T.
H. (eds.) The Proceedings of the LFG 97 Conference. CSLI, Stanford (1997)

12. Kuno, S.: The Structure of the Japanese Language. MIT Press, MA,
Cambridge (1973)

13. Kurosawa, A.: On the Interaction of Syntax and Pragmatics. Ph.D. thesis,
King’s College London (2003)

14. Pritchett, B. L.: Grammatical Competence and Parsing Performance.
University of Chicago Press, Chicago (1992)

15. Purver, M., Cann, R., Kempson, R.: Grammars as parsers. Research on
Language and Computation 4, 289-326 (2006)

16. Seraku, T.: Multiple foci in Japanese clefts and the growth of semantic
representation. In: Aloni, M. et al. (eds.) Lecture Notes in Computer Science
7218. Springer, Berlin (2012)

17. Sohn, H.: The Korean Language. Cambridge University Press, Cambridge
(1999)

Tohru Seraku
St. Catherine’s College,

University of Oxford,
Manor Road, Oxford, OX1 3UJ, UK.

E-mail: <tohru.seraku@stcatz.ox.ac.uk>

