

IJCLA ISSN 0976-0962

International
Journal of

Computational
Linguistics

and Applications

Vol. 3 No. 2 Jul-Dec 2012

Guest Editor
Yasunari Harada

Editor-in-Chief
Alexander Gelbukh

© BAHRI PUBLICATIONS (2012)

ISSN 0976-0962

International Journal of Computational
Linguistics and Applications

Vol. 3 No. 2 Jul-Dec 2012

International Journal of Computational Linguistics and Applications –
IJCLA (started in 2010) is a peer-reviewed international journal
published twice a year, in June and December. It publishes original
research papers related to computational linguistics, natural language
processing, human language technologies and their applications.

The views expressed herein are those of the authors. The journal
reserves the right to edit the material.

© BAHRI PUBLICATIONS (2013). All rights reserved. No part of this
publication may be reproduced by any means, transmitted or translated
into another language without the written permission of the publisher.

Indexing: Cabell's Directory of Publishing Opportunities.

Editor-in-Chief: Alexander Gelbukh

Subscription: India: Rs. 2699

 Rest of the world: US$ 249

Payments can be made by Cheques/Bank Drafts/International Money
Orders drawn in the name of BAHRI PUBLICATIONS, NEW DELHI
and sent to:

BAHRI PUBLICATIONS
1749A/5, 1st Floor, Gobindpuri Extension,
P. O. Box 4453, Kalkaji, New Delhi 110019
Telephones: 011-65810766, (0) 9811204673, (0) 9212794543
E-mail: bahrius@vsnl.com; bahripublications@yahoo.com
Website: http://www.bahripublications.com

Printed & Published by Deepinder Singh Bahri, for and on behalf of
BAHRI PUBLICATIONS, New Delhi.

International Journal of
Computational Linguistics

and Applications

Vol. 3 No. 3 Jul-Dec 2012

CONTENTS

Editorial 5–8

YASUNARI HARADA

QUANTITATIVE LINGUISTICS

Serial Correlation Statistics of Written Texts 11–43

MARK PERAKH

LEXICAL RESOURCES

An Automatic Method for Creating a Sense-Annotated Corpus
Harvested from the Web 47–62

VERENA HENRICH, ERHARD HINRICHS, AND
TATIANA VODOLAZOVA

Mapping Synsets in WordNet to Chinese 63–76

SHI WANG

Corpus Materials for Constructing Learner Corpus Compiling
Speaking, Writing, Listening, and Reading Data 77–92

KATSUNORI KOTANI, TAKEHIKO YOSHIMI,
HIROAKI NANJO, AND HITOSHI ISAHARA

Using the ILCI Annotation Tool for POS Annotation:
A Case of Hindi 93–104

RITESH KUMAR, SHIV KAUSHIK, PINKEY
NAINWANI, ESHA BANERJEE, SUMEDH HADKE,
GIRISH NATH JHA

PARSING AND CO-REFERENCE

POS Taggers and Dependency Parsing 107–122

RAMADAN ALFARED AND DENIS BÉCHET

Exploring Self-training and Co-training for
Dependency Parsing 123–135

RAHUL GOUTAM AND BHARAT RAM AMBATI

Entity Linking by Leveraging Extensive Corpus and
Semantic Knowledge 137–152

YUHANG GUO, BING QIN, TING LIU, AND
SHENG LI

APPLICATIONS

Improving Finite-State Spell-Checker Suggestions with
Part of Speech N-Grams 155–168

TOMMI A. PIRINEN, MIIKKA SILFVERBERG, AND
KRISTER LINDÉN

Author Index 169

Editorial Board and Reviewing Committee 171

Editorial

This issue of the International Journal of Computational Linguistics
and Applications is divided into four topics: quantitative linguistics,
lexical resources, parsing and co-reference, and applications. Since one
of the papers is twice longer than an average paper in this journal, this
issue contains only nine papers and not ten as usually.

The first section of this issue, which includes only one paper, is
titled “Quantitative linguistics”. Quantitative linguistics includes,
among other directions, the study of statistical distributions of letters,
morphs, words, sentences and their characteristics. Perhaps the most
widely known law of quantitative linguistics is Zipf’s law, which
relates the frequencies of words in a text with their frequency rank.

M. Perakh (USA) presents an application of serial correlation
statistics to the study of meaningful texts. He shows that certain
regularities of the distribution of letters are present only in meaningful
texts and are not present in meaningless strings of characters. Those
regularities are observed in different languages of different language
families and with different writing systems. Perakh also reveals the
relation between serial correlation statistics and the Zipf’s law. I believe
that his research can open new perspectives in a number of long-
standing research questions, from the study of the Voynich manuscript
to deciphering ancient scripts to, maybe, the search for messages of
extraterrestrial intelligence. Unfortunately, he did not have a chance to
develop and apply this research: this prominent scientist, talented writer
and outstanding fighter for democracy passed away before he could
finish this paper, which is presented to the reader in the version
copyedited by the Editor-in-Chief.

The next section is devoted to lexical resources. Lexical resources
are crucial for development and for evaluation of computational
linguistics research, providing the empirical basis for the theories and
techniques created in frame of all other research directions.

V. Henrich et al. (Germany) present a method for collecting sense-
annotated corpora from open Internet. Sense-annotated corpora are very

YASUNARI HARADA 6

important for, for example, training supervised word sense
disambiguation classifiers, given that supervised techniques proved so
far to be more accurate than unsupervised ones, and easier to
implement and maintain. The authors show that their method is
language-independent: they successfully apply their method to English
and German. The two obtained corpora (English corpus annotated with
the WordNet sense inventory and German corpus annotated with the
GermaNet sense inventory) are freely available to download.

S. Wang (China) continues the topic of WordNet with a discussion
of the perspectives of its translation and use in languages other than
English, in this case Chinese. During last two decades the WordNet
dictionary proved to be very successful in numerous applications, both
research and practical; many existing tools and techniques rely on the
WordNet structure and sense inventory. However, despite numerous
attempts and long-term efforts, the problem of its translation into other
languages has not been solved. Similar dictionaries do exist for a
number of major languages, but they are not interoperable with
WordNet-based tools; as we have seen, the authors of the previous
paper used GermaNet for processing German data—even if German is
the language most closely related to English. Wang describes the
process of translation of English WordNet into a very different
language, Chinese.

K. Kotani et al. (Japan) report the creation of first text corpus that
contains material reflecting all four modalities of learners of English as
foreign language: writing and speaking, in the form of essays and
speech by non-native speakers of English, as well as reading and
listening, in the form of student’s answers to questionnaires on the texts
that they read in English or stories that they listened. Such a corpus will
no doubt prove very useful in identifying patterns in students’
performance, errors and difficulties. The authors discuss the
methodology for the selection of the material for this corpus.

R. Kumar et al. (India) present a tool for manual computer-aided
annotation of words in texts with part-of-speech tags. Manually
annotated corpora are the raw material for both supervised learning of
rules for automatic annotation and manually detecting regularities and
building corresponding theories. The tool presented by the authors
permits to annotate manually all words in the text, while automatically
presenting to the user the most probable variant of such annotation. The
authors study the effect of such automatic hints on the accuracy and

EDITORIAL 7

efficiency of manual annotation. The tool works with Hindi, the world’s
second largest language.

The next section presents papers devoted to parsing and co-reference
detection. Parsing is the task of identifying the internal structure of
sentences, the relations between words in the sentences. While the best
studied parsing technique is constituency parsing (grouping words
together, and grouping such groups together), an alternative approach,
dependency parsing (subordinating words to each other: some words in
the sentence add more details to other words, making their meaning
more specific) gains increasing attention of the research community,
especially when dealing with free word order languages. Both papers in
this issue devoted to parsing consider the dependency approach.

R. Alfared and D. Béchet (France) address the problem of
efficiency of a parser by restricting the set of the possible part-of-
speech marks of the input words using a separate part of speech (POS)
tagger. Given that parsing is a slow operation, the usefulness of parsers
for large-scale analysis of Internet texts crucially depends on their
speed. The authors show that using a POS tagger significantly increases
the parser’s speed, while slightly decreasing its recall: the parser misses
some correct analyses. The experiments were performed on a French
categorial dependency parser.

R. Goutam and B. R. Ambati (India) explore the effect of two
bootstrapping techniques—self-training and co-training—on a
dependency parser, using Hindi as case study. Self-training and co-
training are simple variants of semi-supervised learning: the use of
unlabeled examples to improve supervised learning techniques. The
authors use for their experiments two major Hindi parsers, and compare
their results with a those achieved at a competition of Hindi parsers.
The authors show that in-domain self-training and co-training gives
significant improvement in accuracy, while out-of-domain self- and co-
training is less advantageous.

Y. Guo et al. (China) address the topic of entity linking, which can
be roughly understood as co-reference. They link named entities found
in the text to sources of structured knowledge, such as databases. They
use rich context available for the named entity in different texts where
it is mentioned to build a model of the entity, so that it can be linked to
a correspondent database entry. Using two different benchmark
datasets, the authors show that their approach outperforms existing
state-of-the art approaches.

YASUNARI HARADA 8

The last section of this issue, also consisting of one paper, is devoted
to applications.

T. A. Pirinen et al. (Finland) address the problem of spell-checking,
probably one of the oldest applications of natural language processing
and still far from complete solution. They present a context-aware
spell-checker, capable of re-ranking correction suggestions generated
by a simpler spell-checker, basing on the information provided by a
part of speech tagger. They also show how to adapt traditional n-gram
models for part-of-speech tagging to morphologically rich languages,
with the case study of Finnish, which is an agglutinative language with
very rich morphology.

I expect that the papers published in this issue would be useful for
scholars, students, and general public interested in natural language
processing, applied linguistics, and language learning.

GUEST EDITOR:

YASUNARI HARADA
PROFESSOR,

WASEDA UNIVERSITY, JAPAN
DIRECTOR,

INSTITUTE FOR DIGITAL ENHANCEMENT OF COGNITIVE DEVELOPMENT
PRESIDENT,

ENGLISH LANGUAGE EDUCATION SOCIETY OF JAPAN
EX-PRESIDENT,

LOGICO-LINGUISTICS SOCIETY OF JAPAN
E-MAIL : < HARADA@WASEDA.JP >

Quantitative Linguistics

IJCLA VOL. 3, NO. 2, JUL-DEC 2011, PP. 11–43
RECEIVED 16/09/12 ACCEPTED 18/12/12 FINAL 23/12/12

Serial Correlation Statistics of Written Texts

MARK PERAKH
1

California State University Fullerton, USA

ABSTRACT

Serial correlation statistics has been widely used in various
fields of science, but apparently has not yet been applied to the
analysis of texts. In this paper a method is offered using
measurements and computations of certain statistical sums that
reflect the variability of the letters’ distribution along texts. It
opened a way for the analysis of texts’ structure not available
by other means and thus led to the discovery of hidden
regularities in the structure of semantically meaningful texts,
including, for example, an “average domain of minimal letters
variability,” common for all semantically meaningful texts in
various languages, but absent in meaningless strings of
symbols. Another revelation was the connection of certain
serial correlation parameters with Zipf’s law.

KEYWORDS: quantitative linguistics, Zipf law.

1 Introduction

Serial correlation statistics (also referred to as autocorrelation) is
widely used in such diverse areas as, for example, econometry [1],
spectroscopy [2], or even in music recording [3], and in many other
areas. However, to the best of the author’s knowledge, it has not yet
been applied to the analysis of texts. In this paper a method is described

1 Mark Perakh passed away soon after submitting this paper, his last
publication. The text was copy-edited and formatted later; errors
inadvertently introduced in this process are responsibility of the editor.

MARK PERAKH 12

making use of the serial correlation, which in this case will be dubbed
Letter Serial Correlation (LSC). It turned out to be a rather powerful
tool leading to the discovery of hitherto unknown features of the texts’s
intrinsic structure.

It is reasonable to assume that meaningful texts possess a certain
degree of order. The entropy of meaningful texts is expected to be
somewhere between the low entropy of highly ordered meaningless
strings and the high entropy of chaotic meaningless strings.

Entropy, though, characterizes the overall level of the disorder in a
text but does not reveal the specific features of a text’s structure.
Therefore it is desirable to develop methods for analyzing specific
forms of order in texts.

Imagine that we try to decipher a text written in an unknown
language. First we have to determine whether the string of symbols in
question is a meaningful text or is gibberish. Information theory is not
helpful in this case because its tools are indifferent to the semantic
contents of the text. The method of strings’ analysis developed in the
Algorithmic Probability/Complexity theory [4, 5, 6], while adding a
powerful tool to the arsenal of mathematics, linguistics, biology and
other fields of inquiry, leaves out the problem of distinguishing
between meaningful texts and gibberish. Recent developments in this
area [7], while introducing certain markers of noise vs. meaningful
messages, do not seem suited to deciphering texts in unknown
languages.

In this paper a method for unearthing certain specific structural
properties of texts is suggested. It has revealed hidden regularities in
meaningful texts’ structures. These regularities happen to be present in
a wide variety of languages that use alphabetical systems of writing.
This method uses a statistical approach based on the analysis of the
variability of symbols’ distribution along the string. It will be referred
to as the Letter Serial Correlation statistics, or simply LSC.

2 Basics of the LSC Method

Imagine a string N symbols long. The symbols can be, for example,
letters drawn from an alphabet that comprises Z different letters. It can
be a text in English, say the Song of Hiawatha by Longfellow, wherein
N = 141,399 and Z = 26; it can be the German text of any of Goethe’s
novels where Z = 26 and N varies from novel to novel. It can be the

SERIAL CORRELATION STATISTICS OF WRITTEN TEXTS

13

Hebrew text of the Book of Genesis, which is N = 78,064 letters long,
with Z = 22. It can be a computer program written as a string of zeros
and ones, so Z = 2. It can even be a biological macromolecule wherein
each “letter” is a specific chemical compound, etc.

There are three versions of the LSC method. However, of the three
versions one turned out to be most informative, therefore in this paper
only the data obtained by that version are reported.

When we say that the text’s length is found to be N letters long, this
number excludes spaces between the words and punctuation marks. We
divide the text into equal cells, each n letters long. If N is divisible by n,
then the number k of cells will be k = N / n. If, though, N is not
divisible by n, then the last cell at the end of the text will be shorter
than the rest of the cells. If k is the number of the “full” cells, each of
the same size n, then the total number of cells, including the partial cell
at the text’s end, will be r = k +1. In such cases the last, partial cell will
be cast off and not accounted for.

Let us denote the length of the truncated text, that is the length
remaining after casting off the partial end cell, expressed in the number
of letters, as L. Obviously, if N is divisible by n, L = N, and k = r,
otherwise L = kn < N.

Let us count how many times each letter of the alphabet appears in
the entire text, and denote these numbers as Mi ,where the index i takes
the values between I = 1 (for the first letter of the alphabet) and I = Z
(for the alphabet’s last letter).

Let us assign to the cells, remaining in the text after truncation (if
such was necessary) numbers from j = 1 (starting at the text’s
beginning) to j = k.

Denote by Xi,j the number of occurrences of letter xi in the cell
number j and by Xi,j+1 the number of occurrences of the same letter xi
in the neighboring cell number j+1 . Consider the expression (Xi,j –
Xi,j+1)2. Squaring the difference ensures the independence of the
calculated quantity on whether the letter xi occurs more often in cell j
or in cell j + 1.

Comment. Obviously, each cell contains a n-gram. Therefore, some
readers may get the impression that we deal here with n-gram statistics.
In fact, the serial correlation statistics is quite different from a n-gram
statistics. A couple of simple examples may help to see this difference.
Let us choose n = 3. Then each cell contains a trigram. Consider a pair
of neighboring cells, one containg the trigram [abc] and the other the
trigram [def]. What if we shuffle the letters in the cells, getting now a

MARK PERAKH 14

pair of cells containing, one the trigram [acb] and the neighboring cell
containing the trigram [efd]? From the viewpoint of the trigram
statistics, the trigrams [abc] and [acb], as well as [def] and [efd], are
different trigrams and should be treated as such as long as the trigram
statistics is applied. On the other hand, within the serial correlation
statistics there is no difference between the cells containing either
trigram [abc] or trigram [acb]. Indeed, the expression (Xi,j – Xi,j+1)

2,
which is at the core of the letter correlation statistics, does not depend
on the order of letters within the cells. Letter correlation statistics is
concerned with the variability of letters along the string and is
indifferent to the fact that cells contain n-grams.

Another example of the difference between the approaches of the n-
gram and the serial correlation statistics is as follows: the n-gram
statistic is only interested in such n-grams which can happen in the
explored texts. For example, the trigram [zth] normally does not
happen in English texts and therefore it is of no interest for n-gram
statistics. Imagine, though, the following string is found in some text:
“The word ‘heart’ in German is ‘Herz’. This translation can be found
in a dictionary.” Choose n = 3. Then it can happen that one of the cells
will contain the following combination of symbols: [z’.(space)Th].
From the viewpoint of the serial correlation, where spaces and
punctuation marks are ignored, this combination is equivalent to a cell
containing the trigram [zth], and is a legitimate element of the serial
correlation statistics.

Now define the following sum, which is referred to as the Measured
Letter Serial Correlation (LSC) sum:

 ()∑∑
=

−

=
+−=

Z

i

k

j
jijim XXS

1

1

1
1,, . (1)

The first summation in equation (1) is performed over all letters of
the available alphabet, from I = 1 to I = Z. The second summation is
over all pairs of neighboring cells, numbered from j = 1 to j = k – 1.
(Each cell, except for cells number 1 and number k, appears twice in
the equation, once paired with the preceding cell and once paired with
the subsequent cell; the number of boundaries between the cells, which
also is the number of pairs of neighboring cells, is k – 1).

If measured on a specific text and calculated by equation (1), the
sum Sm statistically estimates the variability of letter distribution along
the text, averaged over its length.

SERIAL CORRELATION STATISTICS OF WRITTEN TEXTS

15

The interpretation of the behavior of Sm can be facilitated if it is
compared with the Expected Letter Serial Correlation sum, to be
denoted Se. For a randomized text Se can be calculated exactly. When
calculating the expected letter serial correlation sum, a perfectly
random text must be distinguished from the texts obtained by
permutations of letters of a meaningful text. In a perfectly random text
each letter of the available alphabet has the same probability of
appearing at any location in the text. On the other hand, in a text
obtained by a permutation of a meaningful text, the frequency
distribution of letters is the same as in the original text (the latter to be
also referred to as the identity permutation). Therefore in the permuted
texts the probabilities of appearing at a certain location in the text are
different for each letter.

For example, in English, German, and Spanish texts the most
frequent letter is e (which in sufficiently long English texts usually
occupies about 12 percent of the text). Hence, in a gibberish text
obtained by permutation of, say, a sufficiently long English text, the
letter e will also appear at approximately 12 percent of the locations, so
the probability of that letter appearing at an arbitrary location is about
0.12. For the least frequent letter, z, the probability in question is only a
fraction of one percent. On the other hand, in a perfectly random text,
using the same 26 letter-long alphabet, the probability in question for
both e and z is the same, about 1 / 26.

If a certain letter appears M times in the identity permutation, it will
also appear M times in any permuted version of the text in question. On
the other hand, this letter, as well as any other letter of the alphabet in
use, will appear close to N / Z times in a perfectly random text of the
same length of N letters.

In view of the above, the calculation of the expected letter serial
correlation sum must be conducted differently for the texts obtained by
permutations of a meaningful text and for perfectly random texts.
However, the pertinent calculation has revealed that the formulae for
Se, derived for texts randomized by permutation and for a perfectly
random text, differ only by the factor L / L – 1, where L is the total
number of letters in the text (truncated when necessary as described
above). Since the studied texts comprised at least several thousand
letters each, the above factor was practically equal to 1, so the
quantitative difference between expected LSC sums calculated for texts
randomized by permutations of letters of a meaningful texts and the
sums for perfectly random texts turned out to be negligible.

MARK PERAKH 16

The expected letter serial correlation sum is calculated by the
following equation (derived in Appendix 1):

 ∑
= −

−

 −=
Z

i

i
ie L

ML
M

L

n
S

1 1
12 . (2)

The summation in equation (2) is performed over all letters of the
alphabet in use.

For the texts subjected to the study, both the measured letter serial
correlation sum (as per equation 1) and the expected letter serial
correlation sum (calculated by equation 2) are determined for a series
of values of the cell size n. This results in two sets of data, one
representing the functional dependence of Sm on n, and the other of Se
on n.

These data carry information about the text’s structure insofar as it is
reflected in the variability of letters distribution along the text.

In many cases it turns out useful to study letter serial correlation
utilizing, besides LSC sums, also certain auxiliary quantities. One such
quantity is what will be called Letter Serial Correlation density. This
quantity is obtained by dividing the LSC sums by the cell size n. We
distinguish between the measured LSC density dm, and expected LSC
density de. For example, the expected LSC density is calculated as

 ∑
= −

−

 −=
Z

i

i
ie L

ML
M

Ln
d

1 1

11
2 . (3)

Since LSC densities are obtained from the data on LSC sums, they
can’t provide information beyond that inherent in the LSC sums.
However, in certain cases reviewing the data for LSC densities makes it
easier to interpret the observed data. Furthermore, the use of LSC
densities revealed the connection between the LSC and Zipf’s law [8],
as will be shown later in this paper.

Another auxiliary quantity is what will be called specific letter serial
correlation sums. This quantity is obtained through dividing the LSC
sum (either the measured or the expected) by the truncated text’s length
L. Since in the specific LSC sums, unlike the original LSC sums, the
possible effects of the difference in the text’s lengths are eliminated,
the specific sums are useful if texts of various lengths are to be
compared.

Equation (2) represents, theoretically, a straight line in coordinates
Se – n. At n=1 the expected LSC sum has the value of

SERIAL CORRELATION STATISTICS OF WRITTEN TEXTS

17

 ∑
= −

−

 −=
Z

i

i
ie L

ML
M

L
S

1 1

1
12 . (4)

and theoretically it drops to zero at n = L. In fact, though, the Se – n
curve is not exactly a straight line, because the truncated length L of a
text (which is part of the equation in question) is obtained by casting
off the last, incomplete cell. If the total text’s length N is divisible by n,
there is no incomplete cell at the text’s end, and L=N. If, though, N is
not divisible by n, the last, incomplete cell, whose size may vary
between 0 and n – 1, is cast off, so that the truncated text’s length L
may vary, depending on the values of N and n, between L = N and L =
N – (n – 1). As a result, the actual Se – n curve consists of small steps
rather than being an exact straight line, as equation (2) implies.
Fortunately, the steps on the Se – n curve are small (except for very
large n) and do not mask the overall linear dependence of S on n, as
theoretically predicted.

Let us write the theoretical equation for the expected LSC density
(de = Se / n) in the following form:

n

Q
Tdd et =+= , (5)

where de is expressed by equation (3) and the constants T and Q are as
follows:

 ∑
= −

−
=

Z

i

i
i L

ML
M

L
T

1

,
1

2
 (6)

 ∑
= −

−
=

Z

i

i
i L

ML
MQ

1

.
1

2 (7)

Equation (5) represents the theoretical hyperbolic function. In
logarithmic coordinates, the corresponding theoretical curve is a
straight line. However, because the truncation of the text’s length,
described above, varies for different values of n, the actual curve
deviates from the theoretical straight line. To account for that deviation,
equation (5) can be modified as follows :

 ,
1

T
n

QTdd
qte −=−= (8)

where for the theoretical function the exponent q = 1, but for the actual
experimental “curve” it is slightly different from q = 1.

MARK PERAKH 18

All the equations (2) through (7) have been derived for a
hypothetical randomized text in which the total number N of letters as
well as the numbers of appearances of each letter in the text equal these
numbers in the original meaningful text. However, for the original
meaningful text itself a theoretical calculation of the LSC sums, LSC
densities, and specific LSC sums is impossible, because the intrinsic
structure of such a text is yet unknown. These quantities have to be
found experimentally.

The LSC data for meaningful texts have been obtained by applying a
computer program which counted the total number N of letters in the
text, as well as Mi – the numbers of occurrences of each letter in the
text, divided the texts into k cells each of length n, cast off the
incomplete cell if such happened to appear at the text’s end, thus
truncating the text’s length to L, and finally calculated the measured
LSC sum Sm, according to equation (1). This operation was repeated
for a series of values of n, the cell’s size. The described operation
produced a set of values of Sm as a function of n. The program had also
computed, using eq. (2), the expected LSC sum, Se, for the same set of
values of n.

More than 90 letter strings have been studied, including natural
meaningful texts in various languages (Aramaic, Hebrew, Latin, Greek,
English, Russian, German, Spanish, Italian, Czech, Finnish, and
Yiddish). The LSC data displayed distinctive statistical features,
qualitatively identical for all meaningful texts, regardless of language,
topic, style, or authorship. These features were, however, absent in
meaningless texts, either in artificially constructed, highly ordered
ones, or in strings of gibberish randomized in various ways.

3 Experimental Data

The lengths of the studied texts varied from about 5,000 letters to over
two million letters. The studied texts included 13 books of the Bible in
Hebrew, translations of the Book of Genesis into all the listed
languages except Yiddish, the entire text of the Torah (the Pentateuch)
both in Hebrew and in Aramaic, the Book of Isaiah in Italian, the entire
text of the Talmud (which is partly in Hebrew and partly in Aramaic),
translations of a part of Tolstoy’s novel War and Peace into Hebrew
and English, the entire text of Melville’s novel Moby Dick in English,
the United Nation’s Sea Trade Treaty in English, Shakespeare’s

SERIAL CORRELATION STATISTICS OF WRITTEN TEXTS

19

Macbeth in English, Longfellow’s Song of Hiawatha in English,
collections of short (published) stories by the author of this article, one
set in English and the other in Russian, and the full text of one issue
(October 16, 1988) of the newspaper Argumenty i Fakty (“Arguments
and Facts”) in Russian. Besides the listed original texts, LSC
measurements were also conducted on the same texts from which either
all vowels or all consonants were removed. Furthermore, experiments
were conducted with various artificially constructed texts. Among these
artificial texts were highly ordered texts with precisely known
structures, for which the LSC sums could be exactly calculated and the
results of calculations could be compared with the experimentally
measured quantities, thus testing the understanding both of the
outcomes of measurements and of the texts’ structure.

Also among the studied texts were strings with various degrees of
randomness. Some of them were obtained by computer permutations of
various elements (paragraphs, verses, words, letters, etc.) of meaningful
texts. Other randomized texts were the results of a deliberate effort to
artificially create random gibberish from scratch.

Finally, LSC statistics was applied to the yet undeciphered medieval
text known as the Voynich manuscript, written in an unknown language
and an unknown alphabet. The results of this study are not reported in
this paper for two reasons. First, the scope of the obtained data was so
large that it would require a separate paper of an even larger size than
this one, and that material is more of a cryptological than of a linguistic
interest. Secondly, while the results of the study of the Voynich
manuscript by the LSC technique seemed to be of great interest, as they
shed light on many hitherto unknown characteristics of the manuscript,
they had not led to deciphering that mysterious text.

We can generalize the main results of our study as the following two
statements:

1. The behavior of the Letter Serial Correlation sums displays certain
systematic features, common for all studied texts, regardless of the
language, topic, gist, authorship, or style. These features, in
particular, distinguish semantically meaningful texts from
meaningless strings of characters (thus usually enabling one to
determine whether a text is meaningful or gibberish even if its
language and/or the meanings of the alphabetical symbols are
unknown).

MARK PERAKH 20

Fig. 1. Measured (Sm, “curve” 1) and expected (Se, “curve” 2) LSC sums as
functions of the cell’s size n for the text of the Book of Genesis in Hebrew. The
text’s length is 78064 letters.

2. There are quantitative differences between the parameters of the
LSC statistics for various languages, topics, authorships, etc.

In Fig. 1 the data for the expected (Se) and measured (Sm) LSC sums
are shown for the Hebrew text of “Bereshit” (the Book of Genesis).
They exemplify the typical shape of such curves for all the studied
meaningful texts (texts in Finnish appear to be an exception which,
however, was in fact predicted, as will be discussed later).

When reviewing plots like that exemplified by Fig. 1, it should be
realized that the scale for the cell size n on the horizontal axis has
deliberately been made non-uniform in order to accommodate the data
for the entire range of n in one graph. As n increases, the segments of
the n-axis representing the same increase of n become shorter. This
leads to the increased curving of the Sm– n and Se – n graphs toward the
n-axis. Were the scale on the n-axis proportional, the Se– n graph would
very closely follow a straight line, according to the theoretical
equation (2) while the Sm– n graph would preserve the overall shape
shown in Fig. 1 but stretch more to the right. It should be noted that in
all figures the values of n, the cell’s size, expressed as the numbers of
letters in a cell, are integers, as the number of letters cannot be
fractional. Hence, the segments of “curves” between the experimental
points are drawn only to facilitate the revelation of trends, while by
themselves they have no physical meaning.

0

10000

20000

30000

40000

50000

60000

70000

80000

1 2 10 20 100 120 1000 30000

S

n

1 2

SERIAL CORRELATION STATISTICS OF WRITTEN TEXTS

21

The LSC “curves” for meaningful texts, regardless of language,
alphabet, or the particular semantic contents, all reveal several
characteristic points which are as follows:

At small values of n (typically at n < 3) the measured LSC sum is
usually larger than the expected LSC sum: Sm > Se. As n increases, both
the expected and the measured LSC sums decrease, but Sm decreases
faster than Se, so that at some point (to be referred to as Downcross
point, DCP, which in Fig 1 is between n = 1 and n = 2) the curve for Sm
crosses the Se curve and Sm becomes smaller than Se. If we continue
increasing n, both Sm and Se also continue decreasing until Sm reaches a
minimal value at some point n = n* (to be referred to as the Minimum
Point, MP) which in Fig. 1 is at n* ≈ 20. At n > n*, the expected LSC
sum Se continues its gradual decrease, according to the theoretical
equation (2). However, for n exceeding n*, the measured LSC sum Sm
starts increasing. At some point (to be referred to as the Upcross Point,
UCP) the now ascending Sm curve again crosses the still descending Se
curve. In Fig 1 it happens at n ≈ 120. If n is increased further, the Sm
curve usually reaches a maximum at some point (to be referred as the
Peak Point, PP). In Fig. 1 it happens at n ≈ 3000. For even larger n, Sm
drops down. The DCP is absent in Finnish (and presumably in
Estonian) texts.

While the “curves” for the measured LSC sums are qualitatively
identical for all studied languages and types of texts, there are
quantitative differences between them. First, the characteristic points
DCP, MP, UCP, and PP appear at different values of n, depending on
the texts. Second, the depth of the Sm minimum at n* is different for
various languages and particular texts.

The variations in the values of n where the DCP point is observed
are small; for all the studied texts this point occurs between n = 1 and
n = 3 (except for Finnish and presumably Estonian texts, where DCP is
absent). The variations, depending on the language or a specific text, of
n*, at which the MP is observed are more substantial. In all Hebrew and
Aramaic texts the MP was observed between n* = 21 and n* = 24. In
European languages (Latin, Greek, English, German, Spanish, Italian,
Russian, Czech, Yiddish, and Finnish) the MP was observed,
depending on the specific text, between n* = 30 and n* = 85. If we also
include the texts obtained by eliminating either all vowels or all
consonants, the position of the MP happens between n* = 8 and n* = 85.

It seems interesting to report that in many (but not all) cases the
value of n* was found to be close to Z, the number of letters in a given
alphabet. For example, in all Hebrew and Aramaic texts studied the MP

MARK PERAKH 22

was found between n* = 21 and n* = 24 (about 20 texts studied). The
alphabets of these two languages each consists of 22 letters. In Czech
texts the MP was found at about n* = 40 (the Czech alphabet consists of
41 letters). When all vowels were removed from a Czech text, the
location of MP shifted to about n* = 28, which is the number of
consonants in the Czech alphabet. In texts of many European languages
the MP occurs at n* between about 25 and 35 (while the sizes of their
alphabets are close to these numbers as well). The removal of vowels
shifts the position of the MP toward lower values, which, again, are
close to the numbers of consonants in these alphabets.

On the other hand, in some other cases MP was found at n*
considerably larger than the size Z of the alphabet. For example, the
Minimum Point for the English text of the UN Sea Treaty was found at
n* = 85, which is substantially larger than the size (Z = 26) of the
English alphabet. In a few other texts in European languages n* was
found to be between about 50 and about 70, which also is well above
the corresponding alphabets’ sizes. Moreover, the units in the equation
for Sm are not individual cells, but pairs of cells, so the minima on Sm
graphs correspond to the values of 2n* rather than n*. Therefore, while
the alphabet’s size has an obvious effect (the longer the alphabet, the
higher n* is expected to be) it seems reasonable to consider the
coincidence of n* and the alphabet’s size for some of the studied texts
as probably accidental. The nature of n* will be interpreted in the
discussion section.

The location of the UCP in all Hebrew and Aramaic texts was found
close to n ≈ 150. In texts written in European languages the UCP was
found between about n ≈ 400 and n ≈ 600. Of all the characteristic
points, UCP is the least informative because it reflects little if any of
the intrinsic properties of the studied text. Indeed, this point is where
two curves, one for the meaningful text under investigation and the
other for a hypothetical randomized text, intersect. While the shape of
the Sm curve is determined by the text’s structure, it has no relation to
the Se curve, which is for the artificial randomized text, so the structure
of the studied text has only a remote bearing on where Sm will
accidentally cross the independent Se curve.

Finally, the Peak Point was observed between n ≈ 3,000 and
n ≈ 10,000. As a rule, none of the clearly distinguished characteristic
point (DCP, MP, UCP, or PP) was observed on the LSC sums’ curves
for meaningless strings of letters, so the appearance of these points may
serve as an indicator of the semantic meaningfulness of a text.

SERIAL CORRELATION STATISTICS OF WRITTEN TEXTS

23

Fig. 2. The measured (Sm, “curve” 1) and expected (Se, “curve” 2) LSC sums
for the set of short stories in Russian. The text’s total length is 37000 letters.

For example, in Fig. 2 the expected and measured LSC sums are
shown for a text of a set of short stories by the author, published in
Russian. We see that despite the drastic difference between the
languages (in Fig. 1 it was Hebrew while in Fig. 2 it was Russian), the
different text lengths, and the thousands of years between the times of
creation of the texts in these two cases, both figures display identical
features in regard to the behavior of the variability of letters distribution
along the texts.

In both Fig. 1 and Fig. 2, we see the same characteristic point DCP,
MP, UCP, and PP, albeit they happen at different values of the cell’s
size n. A similar picture, with the distinctive points (DCP, MP, UCP,
and PP) was observed for all meaningful texts in all studied languages
(except for Finnish and presumably Estonian, where DCP is absent).

What about randomized texts? Look at Fig. 3, where both expected
and measured LSC data are shown for a text obtained via a computer-
performed permutation of the letters of the Hebrew text of Genesis.
Comparing Fig. 1 with Fig. 3 shows that permutation of letters has
completely destroyed the regularities observed in the original
meaningful text.

Hence the LSC test allows for an immediate recognition of whether
the text is meaningful in some (even completely unknown) language
written in any (including the completely unfamiliar) alphabet, or is just
a meaningless gibberish.

0

20000

40000

60000

80000

1 2 10 1000 10000 30000

S

n

1 2

MARK PERAKH 24

Fig. 3. Measured (Sm, “curve” 1) and expected (Se, “curve” 2) LSC sums for a
text obtained by a random permutation of letters of the Hebrew text of the
“Bereshit” (the Book of Genesis). Compare to Fig. 1, where the sums are
shown for the same text in its original, non-permuted form.

It should be noted that automatic permutation of the letters of a
meaningful text, although converting it into gibberish, does not
guarantee its complete randomization. Since the permutation procedure
is performed randomly, the number of possible outcomes is very large
(it equals N!). The overwhelming majority of the permuted strings are
meaningless. However, among the vast multitude of the permuted
versions of the same original text there is a certain fraction of strings
that accidentally contain blocks of letters possessing a certain degree of
order, even including segments of a semantically meaningful text.

Therefore we cannot expect the LSC data for a particular permuted
string to coincide with the expected LSC sums calculated by
equation (2) for a hypothetical randomized text.

Indeed, as we see in Fig 3, the measured LSC sum for this particular
permuted version of the text of Genesis is distinct from the expected
LSC sum calculated by equation (2) for a hypothetical randomized text
of the same length and with the same letter-frequency distribution. At
relatively small cell sizes (up to n ≈ 50) the “curve” of the measured
LSC sum is more or less close to the “curve” for the expected sum.
This indicates the reasonably high degree of text randomization
achieved in this particular permuted string by the letter permutation
procedure. At n>50 the curve for the measured LSC sum deviates from
the curve for the expected LSC sum, the deviations occurring in a

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

S

n

1 2

SERIAL CORRELATION STATISTICS OF WRITTEN TEXTS

25

haphazard manner depending on the values of n. Similar data have been
observed for other versions of the letters strings obtained by random
permutations of the same original text. In each permuted version the
specific haphazard deviations of Sm from the curve for Se are of a
different shape. The haphazard deviations in question indicate the
presence of blocks of letters with a certain degree of order within the
overall randomized string, these blocks having different sizes and
distribution in each permuted string. If all possible permuted versions
of the text in question were available to see, there would be among
them also one permutation identical with the expected “curve” Se vs. n,
shown in Fig. 1. Moreover, among those permuted texts one will be an
exact copy of the original non-permuted text (identity permutation).

What is significant for our study is that the “curves” of the measured
LSC sums for randomly permuted texts usually lack those typical
features observed for meaningful texts. We don’t see on the graphs for
randomly permuted strings (Fig. 3) any of the points (DCP, MP, UCP,
and PP; see Fig. 1 and Fig. 2) which invariably occur on the LSC
graphs for meaningful texts.

Besides the LSC sums, the discrimination between meaningful texts
and gibberish can also be done by using the LSC densities. In this case
logarithmic coordinates are convenient as the theoretical log de –log n
curves for completely randomized strings are straight lines (equations
5, 6, and 7).

Fig. 4 exemplifies the expected and measured LSC density curves
(in partially logarithmic coordinates), in this example for the translation
of the Book of Genesis into Latin. (For convenience the numbers on the
abscissa are given for n rather than for log n).

Comment. The shape of the “curves” in Fig. 4 is a typical example of a
Zipfian law [8] at work. The original Zipf’s law stated an empirical
functional relation of the word’s frequency in a text to the same word’s
“rank” in the order of words’ frequencies. Subsequently the term
“Zipf’s’ or Zipfian” law was extended to a wide variety of phenomena;
see, for example, [9]. In all of its modifications, Zipfian law always
establishes dependence between two characteristics of the same object.
In the original Zipf’s law the object was a certain word. The two
characteristics were the frequency of that word in a text and the “rank”
of the same word in the order of frequencies. The data in Fig. 4 present
a relation between two quantities—one the cell’s size n (expressed as
the number of letters in the cell) and the other d, which is an artificially
constructed cumulative property of the entire string.

MARK PERAKH 26

Fig. 4. Logs of the LSC densities: estimated (de, “curve” 1) and measured (dm,
“curve” 2) for the translation of the Book of Genesis into Latin.

The cell’s size n seems, at a glance, a property of an individual cell,
rather than that of the entire string. Were this true, the curves in Fig. 4
would not reflect the relation between two properties of the same
object, so the graphs in Fig. 4 would not be the real Zipfian
dependencies, but rather look Zipfian-like by accident. In fact, though,
as the entire body of this work shows, the cell’s size n is a property of
the entire string. Indeed, as some value of n is chosen, the string
converts into a collection of k equal cells, each of size n. The value of n
determines the values of all characteristics relevant to the letter serial
correlation analysis.

Moreover, the very value of d is determined by the value of n.
Hence, both n and d are properties of the entire string, thus justifying
the interpretation of the curves in Fig. 4 as genuine Zipfian
dependencies.

The curve for dm in fig. 4 obviously consists of two parts. One part,
at n < n*, is practically indistinguishable from the curve for de, which is
of the expected LSC density. The second part of the curve for dm, at
n > n*, is clearly different from the curve for de. Using the least
squares fit, we found that the entire curve for de as well as both parts of
the curve for dm, are all well approximated by straight lines.

.In this particular example, the corresponding equations are as
follows: for the expected LSC density, de = 1,729,189 n –1.021
(correlation coefficient is 0.9992); for the measured LSC density at
n < 22, dm= 1,788,292 n –1.073 (correlation coefficient is 0.99992); for
n > 22, dm = 1,500,610 n –0.732 (correlation coefficient is 0.99965).

0

1

2

3

4

5

6

1 10 100 1000 10000 30000

log d

n

1 2

SERIAL CORRELATION STATISTICS OF WRITTEN TEXTS

27

.The negative exponents in the above equations all differ slightly
from 1. As discussed earlier, in the case of the expected LSC densities,
the deviations of the exponent from the value of 1 (the latter
corresponds to the theoretical hyperbolic curve) reflect the effect of the
text’s truncation when the end cell happens to be incomplete and is cast
off. In case of a measured LSC density when the shape of dm – n
function cannot be theoretically calculated, the deviation of the
exponents from unity reflects the difference in the letter-variability
distribution between meaningful texts and their permuted versions.

From the above data (which exemplify the similar results obtained
for a wide variety of texts in 12 languages) it follows that LSC statistics
may be considered a reliable tool for discriminating between
meaningful texts, regardless of language and alphabet, on the one hand,
and gibberish, on the other.

However, we still need to test whether or not meaningless strings
(besides those obtained by permutations of letters of meaningful
originals) can sometimes masquerade as meaningful texts by producing
LSC data imitating those exemplified in Figures 1 and 2.

To this end various versions of meaningless strings, those possessing
a high degree of order as well as those which are highly chaotic, were
studied. First, the LSC statistics were applied to strings obtained by
various methods of permutation of the meaningful original text.

In one version of the procedure, the words within each paragraph of
a meaningful original text were randomly permuted by a computer
while the paragraphs themselves stayed in their original places. As long
as the doubled cell size (2n) is not exceeding the average word length,
the behavior of LSC sums, as could be expected, remained similar to
the one observed for meaningful texts. However, as the doubled cell
size (2n) becomes larger than the average word length, the LSC sums
for the words-within-paragraphs-permuted strings deviate markedly
from those for the meaningful texts.

A similar effect was observed in strings obtained by random
permutations of the paragraphs of the original meaningful text while
the words and letters within the paragraphs remained intact. If
paragraphs are short and have been randomly permuted, the overall text
becomes in a certain sense meaningless. Since, however, the text within
the paragraphs remains intact, each paragraph preserves, within its
confines, the structure of a meaningful text.

Therefore, although a string obtained via random permutations of the
paragraphs of a meaningful text (keeping the texts within the
paragraphs intact) loses its logical consistency and, hence, can be

MARK PERAKH 28

characterized in a certain sense as meaningless, it could be expected
that for the doubled cell sizes not exceeding the average paragraph
length the LSC curves for such permuted strings would look similar to
the case of a meaningful text. Indeed, such a behavior was observed for
the strings obtained by the described version of permutation. To
illustrate the described behavior, in Fig. 5 the LSC curves are shown
for the Hebrew text of the book of Genesis obtained via the described
permutation of verses without modifying the text within the verses.

At n < 22, i.e. 2n < 44, when the doubled cell’s size is less than the
average size of a verse, the measured LSC sum’s curve behaves
similarly to the curves for meaningful texts: the Downcross Point and
the Minimum point for this permuted string are observed at about the
same values on n as for a meaningful text.

However, at n > n* = 22 the measured LSC sum for the text with
permuted verses behaves differently from meaningful texts,
approaching the behavior of fully randomized texts.

These data indicate that there may be (albeit it seems not very likely)
two types of order related to the letter-variability distribution along the
text—a short range order and a long range order. Shuffling paragraphs
(or verses) destroys the putative long range order but leaves intact the
short range order, and the shape of curves for the measured LSC sums
might reflect it. (This question will be discussed a little later.)

Fig. 5. Measured (Sm, “curve” 1) and expected (Se, “curve” 2) LSC sums as
functions of the cell’s size n for a text obtained by a random permutation of
verses in the Hebrew text of the Book of Genesis (without permuting letters or
words within the verses). The text’s length is 78,064 letters. The scale on the
abscissa is logarithmic, but for convenience it is marked in the values of n
rather than of log n.

0

0.5

1

1.5

2

1 2

2
0

1
0

0

3
0

0

5
0

0

1
0

0
0

1
0

0
0

0

7
8

0
6

4

S

n

1 2

SERIAL CORRELATION STATISTICS OF WRITTEN TEXTS

29

In one more version of permutation, all words of the text were
randomly permuted by the computer without permuting letters within
the words. In this case the curve for the measured LSC sum was
similar to those for meaningful texts as long as the cell’s doubled size
2n was less than the average length of a word. However, when 2n
exceeded the average word length, the measured LSC sum behaved
differently from the meaningful original, but similar to the curves for
the texts randomized by letters permutations.

In another set of control experiments certain artificially created
meaningless strings, some with highly ordered and others with chaotic
structures were constructed.

One such text was formed by repeating letters of the English
alphabet 3,000 times each (first the letter A was repeated 3,000 times,
then the letter B, etc.). This string was 63,000 letters long (it contained
no segments for the last five letters of the English alphabet). This string
was highly ordered so its entropy was close to zero. Since the structure
of that text was precisely known, it was possible to theoretically
compute its LSC sum and density. The precise formulae for calculating
the measured LSC sums and densities for that text are shown in
Appendix 2. While the derivations of these formulae are omitted to
keep the paper’s size within reasonable limits, the validity of the
formulae in question follows from the almost perfect coincidence of the
data obtained experimentally and those calculated using these formulae.
(Anybody may get the detailed derivation of the formula in question by
requesting it from the author.) In Fig. 6 the plot of the LSC density vs.
cell size (in log-log coordinates) is shown for the near-zero-entropy
string in question. The results of measurements and calculations
(conducted for the same set of discrete cell sizes) coincided in this case
so closely that the two curves could not be resolved from each other, so
the same zigzag-shaped graph in Fig. 6 represents the data for both the
measurement and calculation.

This result testifies that we have developed a reasonable
understanding of the LSC effect and its relation to the text’s structure.
As Fig. 6 shows, the behavior of the LSC statistics in the described
near-zero-entropy meaningless string has nothing in common with the
behavior of the corresponding quantities for meaningful texts
(illustrated in Fig. 4).

Another artificial string was formed by sequentially repeating the
English alphabet 2422 times. The entropy of that meaningless string is
a little higher than for the previously discussed low entropy texts, but it

MARK PERAKH 30

is still very low. For this text the shape of the Sm – n curve also turned
out to be different from the curves for meaningful texts.

One more artificial meaningless string of low entropy was created by
first repeating the first half of the English alphabet, i.e. the string
ABCDEFGHIJKLM, 17 times; to its end a string was concatenated
which consisted of the letters BCDEGFHIJKLMN repeated 17 times;
then the letters CDEFGHIJKLMNO, repeated 17 times, followed, etc.,
until the last substring comprising the second half of the alphabet, also
repeated 17 times, completed the text.

Fig. 6. Dependence of both measured (dm) and calculated (dc) Letter Serial
Correlation densities on cell size n (in log-log coordinates) for an artificially
created highly ordered string 63000 letters long. For convenience, the values on
the abscissa are indicated for n rather than for logarithms of n. The upper cusp
corresponds to n = m. To the left of the cusp n < m, to the right n > m (in this
sample m = 3000).

The procedure was repeated 7 times, so the total length of that text
was 20111 letters. Again the Sm – n curve for this highly ordered text
was distinctively different from the Sm – n curves for meaningful texts.

Finally, one more meaningless text was made up by randomly
hitting the keys on the computer keyboard, trying to avoid favoring any
particular letters at the expense of other letters. Unlike the previously
discussed artificial texts, which all were substantially ordered and thus
had low entropy, this string (which was 10,000 letters long) was
prepared with the intention of yielding a highly randomized string thus
possessing entropy substantially exceeding that of meaningful texts.

It is known [10, 11] that actions of humans cannot be effected in a
genuinely random manner. Despite the strenuous effort to avoid any
selectivity in hitting the keyboard buttons, a human operator will

0

1

2

3

4

5

1 5 2
5

7
5

2
5

0

5
0

0

7
5

0

1
7

5
0

3
5

0
0

4
5

0
0

log d

n

SERIAL CORRELATION STATISTICS OF WRITTEN TEXTS

31

subconsciously but inevitably hit the keys in a not fully random way.
As expected, the Sm vs. n curve for the supposedly random string
obtained as described revealed certain subconscious selectivity which
resulted in a letter frequency distribution different from a fully random
string. To a certain extent the letter frequency distribution in the
artificial, supposedly random text, indeed turned out to be more
uniform than in meaningful texts. (In a perfectly random text the letter
frequency distribution is ideally uniform). However, it was not as
uniform as it should be in a perfectly random string. Therefore, the Sm –
n curve for this artificial high-entropy text displays certain features
resembling the data for meaningful texts (for example, a minimum at a
certain value n* of a cell size). Although these features are not as
clearly evident as they are for meaningful texts, they may cause doubts
in regard to the distinction between disordered gibberish and
meaningful text insofar as the LSC statistics is applied. While this
phenomenon is perhaps of interest for psychology, in our case we
needed to determine whether or not the LSC statistics enables us to
distinguish between semantically meaningful strings and disordered
gibberish of high entropy.

It was found that the plots of specific LSC sums for meaningful texts
are more clearly different from those for the artificial high-entropy
gibberish than are the plots of Sm sums. Furthermore, the data are
distinctively different for meaningful texts and for high-entropy
gibberish if a text is divided into halves and the LSC statistics are
compared for both halves. In the case of a meaningful text, the exact
locations of the MP (i.e. the value of n*) as well as the “depth” of the
minimum typically are different for the two halves of the text. On the
other hand, in the case of artificial high-entropy gibberish the
characteristic points for both halves of the text are almost identical.

As mentioned before, we have also studied texts obtained by
removing either all vowels or all consonants from the meaningful texts.
These studies have revealed that the “shrunk” texts composed of either
only consonants or only vowels preserve all the features of the LSC
statistics observed for the original, full versions of the same texts. On
the curves of the measured LSC sums for “shrunk” texts all
characteristic points DCP, MP, UCP, And PP, discussed earlier, are
clearly seen, as they are on the curves for the full, all-letters versions.

 (There is a quantitative difference between the LSC sum curves for
the full, all-letters versions, and for the “shrunk” only-vowels or only-
consonants versions. The removal of all vowels, and even more of all
consonants, causes a shift of the MP to lower values of n* and also

MARK PERAKH 32

decreases the “depth of minimum” on those curves.) This points to the
deeply intrinsic character of the LSC statistics’ behavior, which is not
destroyed even by such a brutal mutilation of texts as the removal of all
vowels or of all consonants.

4 Discussion

A detailed discussion of the entirety of our LSC data (which comprise
over 300 graphs and scores of tables) cannot be done within the
confines of a reasonable paper size. Therefore only a brief discussion of
the most salient points will be offered here.

First, we will discuss the nature of the Downcross Point (DCP)
observed on measured LSC curves for meaningful texts. The
explanation in this case seems to be almost obvious. Recall that the
DCP was always observed at the cell’s size between n = 1 and n = 3. In
other words, at n = 1, i.e. when the cells contain only one letter each,
the measured LSC sum Sm for meaningful texts is slightly larger than
the expected LSC sum Se , calculated for a text obtained by permutation
of letters of the original meaningful text. This, of course, is expected.
Indeed, at n = 1 each cell holds just one letter.

Since the terms in the LSC sum are contributed by pairs of
neighboring cells, there are only two possibilities. If both neighboring
cells of size n = 1 happen to contain the same letter, the term
contributed to the LSC sum by that pair of cells equals zero. If, though,
the neighboring cells of that size contain different letters, such pair of
cells contributes to the LSC sum a term of 2 (since each of the differing
letters in question contributes 1 to the sum; see eq. (1)).

It is easy to figure out that the maximum value of Sm (for n = 1) is
observed when no pair of neighboring cells contains the same letter in
both cells; the sum is in this case Sm = 2(L – 1) where in this case L =
k. Therefore, the more pairs of neighboring cells of size n = 1 hold the
same letter, the smaller the LSC sum is. In natural texts doubling of
letters is rare; the probability of any pair of neighboring cells of size n
= 1 containing the same letter is less than the probability of them
holding different letters.

On the other hand, in a randomized texts all letters are almost
equally likely to occur in any cell (except of the effect of the letters
various frequency, mentioned above), so if in cell j there is letter x, the
probability of the same letter x also appearing in cell (j+1) is almost the
same as for any other letter, say y, of the alphabet. (Strictly speaking,

SERIAL CORRELATION STATISTICS OF WRITTEN TEXTS

33

this assertion is exactly valid only for a perfectly random text, while the
calculation of the expected sum was conducted for texts randomized by
letter permutations of the original meaningful text; however, the
calculation has shown that for not very short texts the quantitative
difference between the values of the expected LSC sum for perfectly
random texts and for letter-permuted texts is, in practical terms, utterly
negligible; therefore the above assertion remains practically valid for
our data).

As a result, a randomized text at n=1 usually contains more pairs of
neighboring cells with the same letter in each than the original
meaningful text. Hence the LSC sum for a randomized text at n = 1
includes more terms equal to zero than the corresponding sum for a
meaningful text. This results in a slightly larger Sm at n = 1 for
meaningful texts than for randomized strings. At n > 1, when a cell
contains more than one letter, the LSC sums, both expected and
measured, decrease. Indeed, if cells contain only 1 letter each, each
time two neighboring cells hold different letters it means a 100%
change of a cell’s content from cell to cell.

If, though, cells contain more than 1 letter each, only a fraction of
neighboring cells will have the entire set of letters in each cell different
from its neighbor; some other pairs of cells will have only partially
different contents, so the change of a cell’s content from cell to cell, on
the average, will be less than 100% (i.e. the relative letter variability
decreases for n > 1).

The LSC sum is larger when the variability of letters distribution is
larger. Since for n > 1 the relative variability decreases, the LSC sums
drops. It drops faster for meaningful texts than for randomized ones
because in the latter this effect is mitigated by the much larger degree
of the overall randomness of the letters distribution. As a result, the
descending curve for the gradually decreasing Sm crosses at the DCP
the curve for the also decreasing, but at a slower pace, Se.

If the above explanation is correct, certain predictions can be
suggested. If a certain language’s orthography requires a frequent
doubling of identical letters, for a meaningful text in such a language
the measured LSC sum will contain, at n = 1, a slightly larger fraction
of pairs of neighboring cells both holding the same letter. Such pairs of
cells will contribute to the LSC sum terms equal to zero, and this will
result in a decrease of Sm for such a text, making it less than the
expected LSC sum Se at n=1. Finnish and Estonian orthography require
a frequent doubling of both consonants and vowels. Therefore, based
on the above interpretation of the Downcross Point, it could be

MARK PERAKH 34

predicted that for Finnish (and presumably Estonian) texts the
measured LSC sum Sm at n = 1 would be no larger than the expected
LSC sum Se, as was observed in the variety of other texts, but, on the
contrary, would be below the expected LSC sum. This prediction has
been fully confirmed experimentally for Finnish texts.

Based on these data one more prediction was made. Italian
orthography requires a frequent doubling of consonants but not of
vowels. Therefore, for regular meaningful Italian texts no
“abnormality” in the mutual location of Sm and Se curves at n = 1 can be
expected. Indeed, the LSC curves for Italian texts had the usual
configuration wherein at n = 1 the measured LSC sum is slightly larger
than the expected LSC sum. It could be expected, though, that in Italian
texts stripped of all vowels the frequent doubling of consonants would
result in the inversion of the Sm and Se curves at n = 1, as was observed
for Finnish texts. This expectation was also fulfilled.

The described observations favor our interpretation of the
Downcross Point.

Let us now discuss the Minimum Point. The value of the measured
LSC sum Sm is determined by the variability of the letter distribution
along the text. Recall that the terms in the Sm sum are calculated for
pairs of adjacent cells. The more identical letters happen to occur on
the average within the length of 2n, the less Sm is. Obviously, then, the
minimum on the Sm – n curve must occur at such cell’s size n*, which
corresponds to the minimal average variability of the letters
distribution within a segment of the size 2n*.

The observation of the MP means the revelation of what can be
referred to as an average Domain of Minimal Letter Variability
(DMLV) whose size is 2n* and which exists in all meaningful texts
using an alphabetical writing system, regardless of language, style,
authorship, alphabet, etc.

While the DMLV is consistently present in all meaningful texts, it is
usually absent in gibberish, both of the highly ordered and the highly
randomized kinds. (Although in extremely rare cases a string of
gibberish may accidentally happen to have a DMLV, this would be an
exceptional occurrence, while in meaningful texts it is a rule.)

The statement asserting the consistent existence of a DMLV in all
meaningful texts (but its usual absence in gibberish) follows directly
from the observation of a distinctive minimum on the Sm – n curves, i.e.
it is simply a statement of fact. Its interpretation, although post-factum,
does not seem very difficult.

SERIAL CORRELATION STATISTICS OF WRITTEN TEXTS

35

It seems reasonable to postulate that the size of a DMLV is related to
the size of a text’s segment wherein a certain topic is covered. Then it
can be expected that certain words related to that topic occur within
that segment more often than on average in the text as a whole.
Consequently, a certain set of letters is also expected to occur within
that text’s segment more often than in the rest of the text. This means a
lower letter variability within the segment in question, which
contributes to a smaller value of Sm. The size of a DMLV may be
expected to be connected to the average size of a text’s segments
covering individual topics.

Our interpretation jibes well with the observed variations between
the positions of MP in various texts. For example, the Hebrew and
Aramaic texts are written in alphabets each containing only consonants,
with the total of 22 letters in the alphabet. On the other hand, the most
common European languages use substantially longer alphabets (for
example, the English alphabet has 26 letters; the Russian alphabet has
33 letters, while the Czech alphabet has 41 letters). These variations
alone necessarily must affect the size of a text’s segment covering a
certain topic. However, besides the alphabet’s size, the peculiar ways in
which each language structures sentences enhances the variations in the
DMLV. Here is a simple illustration. Consider a maxim that came from
the ancient Hebrew texts but has become part of many ancient and
modern languages. Let us write that maxim in several languages. Start
with its original form in Hebrew, which looks like בעיר נביא to be) אין
read from right to left). Transliterated into Latin characters, it takes the
following form: EIN NVI BIRO. Its length is only 10 letters.

Now let us write the conventional translations of that maxim into
English, German, Russian, and Ukrainian. English: There is no prophet
in one’s native town. (31 letters, of which 19 are consonants). German:
Es gibt kein Prophet in seiner Stadt. (30 letters, of which 19 are
consonants). Russian (rendered in Latin letters): Net proroka v
otechestve svoem (25 letters, of which 15 are consonants; the
combination ch in the Russian alphabet is rendered by one letter).
Ukrainian: (rendered in Latin letters): Nema proroka u ridnomu misti.
(25 letters, of which 14 are consonants).

Obviously, the Hebrew text requires substantially fewer letters to
cover a certain topic, so the DMLV for Hebrew naturally is shorter,
than, say, for English or Russian, and the minimum on the Sm “curve”
for Hebrew texts appears at lower n (usually about 20–24) than, say, for
English texts (typically somewhere about 70 and even more). The
unusually large n* = 85 for the UN Sea Trade Treaty also can be

MARK PERAKH 36

interpreted on the same basis: it is written in a heavy legalese; such
documents are known for a pedantic verbosity, wherein each statement
is expressed with multiple asides and additional clauses, which makes
the segment of a text, covering a certain topic, substantially longer than
in non-legal texts. This shifts n* to larger values than in non-legalese-
written texts.

A natural unit of a semantic content is a sentence. Therefore it may
be surmised that the size of a DMLV is somehow related to the average
length of a sentence. It hardly could be the length of one sentence,
because if 2n* were about one sentence long, n* would be about half a
sentence long, and in this case to ensure the minimal letters’ variability,
two halves of one sentence would need to contain, on the average,
almost the same set of letters, which can hardly be expected. Therefore
it seems reasonable to expect that DMLV should comprise several
sentences, albeit not too many, so that the set of sentences within the
scope of an average DMLV covers a specific narrow subject.

To test that hypothesis we have measured the average lengths of
sentences in a variety of texts and compared them with the values of
2n* for these texts.

The value of 2n* varies, depending on languages and specific texts,
and usually is between 40 and 170 letters. On the other hand, the
average length of a sentence, depending on texts, was found to be
between 0.4n* and 1.35n*, the mean value being about 0.8n*. Therefore
it can be stated that there is in all meaningful texts an average Domain
of Minimal Letter Variability which is between 1.5 and 4.5 sentences
long, its average length for a variety of texts being about 2.5 sentences.
Apparently that is the average length of a text’s segment typically
covering individual subjects and hence containing a limited variety of
letters. As the text’s segment becomes longer than, on the average, the
length of the DMLV, the subject changes, and with it also the words
used, and hence the letter composition becomes more varied, so the
measured LSC sum Sm increases above the minimum.

Finally, let us discuss the peak (PP) on the Sm – n curves for
meaningful texts. To decipher the nature of that peak special tests have
been conducted, in which two types of texts were compared. To this
end a long text would be chosen, for example the text of several
sequential chapters of Tolstoy’s novel War and Peace in English
translation.

The length of the text subjected to the test in one particular case was
180,000 letters. This text was then divided into 18 equal segments of
10,000 letters. The LSC sum was measured for the first segment. Then

SERIAL CORRELATION STATISTICS OF WRITTEN TEXTS

37

the text was gradually enlarged by sequentially concatenating
additional segments of the same size. The LSC sums were measured at
each step of the text’s gradual enlargement. In one set of tests, at each
step the added segment was different from the previously concatenated
one, being the next segment in the sequence constituting the 180,000
letter-long original text. In another set of tests, at each step the same
initial segment was repeatedly concatenated to the string, until the total
text comprised 18 identical parts each 10,000 letters long. This way a
strong long range order was artificially generated in the tested text,
while in the first set of tests the long range order, if such existed, was
limited to that existing in the text naturally.

Comparing the two described types of a text, it was found that the
LSC sums behave quite differently in the two texts in question. These
data indicated that the natural meaningful texts possess no long range
order. As the cell size n increases, each cell encompasses a larger
chunk of a text. As the length of the text within a cell increases, local
violations of order accumulate, until no order can be observed any
longer. Since the short range order naturally does not exist anymore
for such large values of n, and the long range does not exist in natural
meaningful texts anyway, for such large n the text starts behaving
similar to a randomized one. For the latter, as the behavior of the
expected sum Se shows, the LSC sum always decreases with the
increase of n. Hence the Sm – n curve, which is ascending at smaller n,
now changes to a descending one, typical of randomized texts.
Therefore the peak on the Sm – n curve corresponds to such cell sizes
where the LSC type of order in the text completely disappears, and the
LSC “curve” follows the behavior typical of random texts. .

5 Conclusion

As the data presented here show, the LSC statistics makes it possible in
many cases to reliably distinguish semantically meaningful texts from
gibberish, regardless of the alphabet in use, language, style, authorship,
etc. The LSC statistics have revealed certain hidden features of the
order intrinsic in meaningful texts, as, for example, the existence in all
such texts of an average Domain of Minimal Letter Variability.
Furtermore, a conection was revealed between the LSC statistics and
Zipf’s law.

MARK PERAKH 38

The ancient Hebrew and Aramaic texts display exactly the same
behavior regarding the letters’ variability distribution along the text as
the text of a Russian newspaper printed in 1988, or as a Shakespeare’s
play in English, or as a translation of Genesis into Czech. Languages
differ in their vocabulary, grammar, idioms, and alphabets, but
somewhere on a deeper level they all seem to follow the same
statistical features, which perhaps points to their common origin from a
single source.

ACKNOWLEDGEMENTS. Dr. Brendan McKay of the Australia
National University, Canberra, Australia, at various periods of time
participated in this work, including the preliminary discussion of the
idea of LSC, writing the computer programs, used for performing the
computation of the LSC data, and running various texts through these
programs. The author deeply appreciates Dr. McKay’s contribution.
The author is also thankful to anonimous reviewers for pithy comments
which served to the paper’s substantial mprovement.

Appendix 1. Derivation of the Formula for Expected Letter
Serial Correlation Sum

Recall that Xi,j denotes the number of occurrences of letter xi in a cell
number j. Since all cells are of the same length n, we have

 Var (Xi,j) = Var (Xi, j+1), (A1)

 E(Xi,j) = E (Xi, j+ 1), (A2)

where Var(X) is the variance of X and E is the expected value of X.

Step 1. Variance is calculated [12] as follows :

 Var (X) = Е (Х2) – [Е (Х)]2, (A3)

where the first term is the expected square of X and the second term is
the square of the expected X.

Consider now the expression Е[(Xi,j + Xi, j+ 1)]
 2 which is the expected

square of the sum of the values of X in two sequential cells. From
equation (A3) we obtain

 Е[(Xi,j + Xi, j+1) 2] = Var (Xi,j + Xi,j+ 1) + [E(Xi,j + Xi,j+1)]
2. (A4)

SERIAL CORRELATION STATISTICS OF WRITTEN TEXTS

39

The expected value of a sum equals the sum of the expected values
of the items it comprises [8]. Then, accounting for equation (A2), we
obtain from equation (A4):

 Е[(Xi,j + Xi, j+1)
 2] = Var (Xi,j + Xi, j+1) + 4[E(Xi,j)]

2. (A5)

Now consider the expression

 Е[(Xi,j – Xi, j+1)
2] + E[(Xi,j + Xi, j+1)

2. (A6)

Replacing the expected value of a sum with the sum of expected
values of its constituent items and accounting for (A2), we obtain from
(A6) the following set of algebraic transformations:

Е[(Xi,j – Xi, j+1)

2] + Е[(Xi,j + Xi, j+1)
 2] =

Е[(Xi,j – Xi, j+1)
2 + (Xi,j + Xi, j+1)

 2] =

E[(X2
i,j

 + X2
i,j+ 1

 –2Xi,j Xi,j+1+ X2
i,j+ X2

i,j+ 1 + 2 Xi,j Xi, j+1] =

E[2 X2
i,j+ 2 X2

i, j+1] =E [4 X2
i,j] = 4E[X2

i,j]

(A7)

Now subtract (A5) from (A7):

 [(Xi,j – Xi, j+1)
2] = 4 E [X2

i,j] – 4 [E(Xi,j)]
2 – Var (Xi,j + Xi, j+1) (A8)

From equation (A3) we can see that the first two terms in the right side
of equation (A8) equal 4Var (Xi,j). Then

 Е[(Xi,j – Xi, j+1)
2] = 4 Var (Xi,j) – Var (Xi,j + Xi, j+1) (A9)

Comment. If we dealt with perfectly random texts, Xi,j and Xi,j+ 1 would
be independent random variables. However, we are deriving formulas
for a text randomized by a permutation of the letters of an original
meaningful text, so the permuted text is not perfectly random. Unlike
for a perfectly random text, the stock of available letters in our case is
limited to those letters present in the original meaningful text and in the
same numbers. Therefore if a certain letter x occurs in a cell, this
decreases the stock of this letter available for the next cell and thus
diminishes the probability of x’s occurrence in the next cell. Hence
there is a certain negative correlation between Xi,j and Xi,j+ 1 which
therefore are not independent variables. In such cases the variance of a
sum cannot be replaced with the sum of variances of its constituent
items so the variances of both Xi,j and (Xi,j + Xi, j+ 1) must be calculated
and inserted into equation (A9) separately. If, though, variables Xi,j and
Xi, j+ 1 were independent, the right side of equation (A9) would equal
2Var (Xi,j).

MARK PERAKH 40

Step 2. We have to choose now the distribution function for the
quantity Xi,j within a cell. Our options are limited to the choice between
the multinomial and hypergeometric distributions [13]. The
multinomial distribution is applicable to tests with replacement while
the hypergeometric distribution is applicable to tests without
replacement. In our case, if a letter, say x, occurs in a cell once, this
decreases the probability it will occur again in the same (or the next)
cell, because the stock of letters is limited to those actually found in the
original meaningful string. Therefore the conditions under which our
calculation is conducted meet the definition of tests without
replacement. In other words, we postulate the hypergeometric
distribution of letters’ frequencies within the cells. (While this choice is
theoretically well justified, it has a very little significance in practical
terms. As the pertinent calculation shows, the final formulae of Se differ
between the cases of a hypergeometric and a multinomial distributions
only by the factor of L / (L – 1), where L is the truncated (if need be)
length of the text, expressed as the number of letters. Obviously, except
for extremely short strings (which are hardly of interest) the above
factor is so close to unity that the difference between the formulae for
the two listed distributions is utterly negligible; for the sake of
theoretical purity we calculate here the expected LSC sum for a
hypergeometric distribution.)

For the hypergeometric distribution, the variance is calculated as
[12]:

 Var (Xi,j) = (L – m) mp (1 – p) / (L – 1), (A10)

where m is the sampling size and p = Mi / L. Recall that Mi is the
number of occurrences of the letter xi in the entire string and L is the
truncated (if need be) length of the text expressed as a number of
letters.

For the first term in the right side of equation (A9) the sampling size
m equals the cell size: m = n = L / k. For the second term on the right
side of (A9) the sampling size is twice as large: m = 2n = 2L / k. Then
we can write for the first term on the right side of (A9):

 4 Var (Xi,j) = 4(L – L / k) (1 – Mi / L) Mi / k (L – 1),

or, after a simple algebraic transformation

 4 Var (Xi,j) = 4 Mi (L – Mi) (1 – 1 / k) / k (L – 1). (A11)

Similarly, for the second term on the right side of (A9) with its
doubled sampling size we obtain

SERIAL CORRELATION STATISTICS OF WRITTEN TEXTS

41

 Var (Xi,j + Xi, j+1) = 2 (1 – 2 / k) Mi (L – Mi) / k (L – 1). (A11a)

Finally, plugging (A11) and (A11a) into (A9), we find

 Е[(Xi,j – Xi, j+ 1)
2] = 2 Mi (L – Mi) / k (L – 1). (A12)

To complete our calculation, we have to sum (A12) over all letters
of the alphabet (from i = 1 to i = Z) and over all pairs of neighboring
cells (from j = 1 to j = k – 1). Since, however, all cells are of the same
size, the summation over j can be replaced with a multiplication by the
value of k – 1 . This results in the formula

∑
= −

−

 −=
Z

i

i
ie L

ML
M

k
S

1

.
1

1
12

Equation (2) in the body of the text is a replica of the above equation
with one modification: the number k of cells which appears in the
above equation, is replaced in equation (2) with its expression through
the cell size n and the string’s truncated length (k = L / n).

Appendix 2. Formula of LSC Sum for an Artificial Low
Entropy Text Composed of Repeated Letters

Consider a string L letters long composed of Z equal segments, each m
letters long, where Z is the number of letters in the alphabet. Each m-
long segment contains one particular letter, repeated m times. There are
no two segments containing the same letter. For example, such a string
can have Z = 26 segments, of which the first one contains m times the
letter A, the second segment m times the letter B, etc., up to the
segment number 26 which contains m times the letter Z. As before, we
also divide this string into k cells each n letters long, so that
kn = mZ = L. Obviously the boundaries between cells and those
between segments generally will not coincide. The value of m is fixed
for a particular string while the value of n varies as we calculate (or
measure) the LSC sum. Since the structure of this string is precisely
known, we can theoretically calculate the LSC sum for that string.

We have to distinguish between two cases, in one m > n and in the
other n > m. Introduce the following notations:

For m > n: m / n = s + v;
For n > m: n / m = r + w,

MARK PERAKH 42

where s and r are integer parts while v and w are fractional parts of the
corresponding quotients.

As long as m > n, the calculated LSC sum is found from the
following equation (its derivation is freely available to anybody who
would request it from the author. Its validity is ascertained by the
almost perfect coincidence of the data obtained via that equation with
the measured data):

.)()1(2
**

1

2

1

22*

+−= ∑∑

==

i

i

i

i
c ivivnjS

For n > m the formula for the LSC (its derivation is also available on
request) becomes

.)()1(2
**

1

2

1

2*

+−= ∑∑

==

i

i

i

i
c iwiwmntS

In these equations j* = (Z – 1) / i* and t* = (k – 1) (n – mr) / m; i* is
either the integer part of the quotient 1 / v (for the case of m > n) or the
integer part of the quotient 1 / w (for the case of n > m).

In those cases where either m / n (if m > n) or n / m (if n > m) are
integers, the above equations convert into much simpler versions. For
m > n in such cases

 Sc = 2n2 (Z – 1). (i)

For n > m in such cases

 Sc = 2mn (k – 1). (ii)

For the particular case of n = m both equations (i) and (ii) yield
identical results.

The LSC density dc is obtained from all the quoted formulas via the
division by the cell size n.

The points between those for the integer values of n, form a zigzag-
shaped curve which has no meaning in itself but shows the trends.

The uppermost cusp on the curve in Fig. 6, which separates the
ascending and the descending branches of the graph, corresponds to
m = n. (The particular curve in fig. 6 relates to a text where m = 3,000,
and the total length is 63,000 letters). The results of calculations using
the quoted formulas turned out to be very close to the results of a direct
measurement of LSC density, so that the calculated and measured
curves practically coincided. This observation may serve as

SERIAL CORRELATION STATISTICS OF WRITTEN TEXTS

43

confirmation that we have developed a reasonable understanding of
both the structure of texts, insofar as their letters variability distribution
is in question, and of the working of the LSC statistics.

References

1. R. S. Pindyck, D. L. Rubenfeld. Economic Models and Economic
Forecasts. McGrow Hill, NY, 2000.

2. T. J. Bruno & P. D. N. Svoronos. CRC Handbook of Fundamental
Spectroscopic Correlation Charts. CRC Press, NJ, 2005.

3. J. Tyrangiel. Why Pop Music Sounds Perfect. Time Magazine, No. 2, 2009.
4. R. J. Solomonoff. A Preliminary Report on a General Theory of Inductive

Inference. Cambridge, MA. Report ZTB138. Zator Co., 1960.
5. A. N. Kolmogorov. Three Approaches to the Quantitative Definition of

Information. Problems of Information Transmission. 1: 1–17, 1965.
6. G. J. Chaitin. Randomness and Mathematical Proof. Scientific American, 5,

232 –238, 1975.
7. P. Vitanyi, “Meaningful information, http://front.math.ucdavis.edu/

cs.CC/0111053, 2000.
8. C. D. Manning. Foundations of Statistical Natural Language Procesing.

MIT Press, Cambridge MA, 1999.
9. N. L. Johnson, S.Kotz and A. W. Kemp. Univariente Discrete Distribution,

2nd ed., John Wiley and Son, NY, 1992.
10. M. Bar-Hillel and W. A. Wagenaar. The perception of randomness.

Advances in Applied Mathematics, 12, 428–454, 1991.
11. G. Keren and C. Lewis (eds). A Handbook for Data Analysis in the

Behavioral Sciences. Hillsdale, NJ: Lawrence Erlbaum, 1993.
12. R. J. Larsen and M. L. Marx. An Introduction to Mathematical Statistics

and its Applications. Englewood, NJ, Prentice-Hall Publishers, 1986.
13. P. Olofsson. Probability, Statistics, and Stochastic Processes. Hoboken, NJ,

Wiley & Son. 2005.

M ARK PERAKH
10106 SAGE HILL WAY ,,

ESCONDIDO, CA 92026, USA,
TEL.: 760 751 9932

E-MAIL : <MARPERAK@COX.NET>

Lexical Resources

IJCLA VOL. 3, NO. 2, JUL-DEC 2012, PP. 47–62
RECEIVED 31/10/11 ACCEPTED 09/12/11 FINAL 28/09/12

An Automatic Method for Creating
a Sense-Annotated Corpus
Harvested from the Web

VERENA HENRICH, ERHARD HINRICHS, AND
TATIANA VODOLAZOVA

University of Tübingen, Germany

ABSTRACT

This paper reports on an automatic and language-independent
method for compiling a sense-annotated corpus of web data. To
validate its language-independence, the method has been applied
to English and German. The sense inventories are taken from
the Princeton WordNet for English and from the German word-
net GermaNet. The web-harvesting utilizes existing mappings of
WordNet and GermaNet to the English and German versions of
the web-based dictionary Wiktionary, respectively. The data ob-
tained by this method have resulted in the English WebCAP (short
for: Web-Harvested Corpus Annotated with Princeton WordNet
Senses) and the German WebCAGe (short for: Web-Harvested
Corpus Annotated with GermaNet Senses) resources.

KEYWORDS: Sense-annotated corpus, sense-tagged corpus, word
sense disambiguation, WSD, Princeton WordNet, GermaNet, Wic-
tionary

1 INTRODUCTION

Sense-annotated corpora are an important resource for a variety of natural
language processing tasks including word sense disambiguation, machine
translation, and information retrieval. In past resource building, sense-
annotated corpora have typically been constructed manually. This has

48 V. HENRICH, E. HINRICHS, T. VODOLAZOVA

made the compilation of such resources costly and has put a natural limit
on the size of such data sets. This in turn suggests that alternatives to man-
ual annotation need to be explored and automatic, language-independent
means of creating sense-annotated corpora need to be investigated. The
purpose of this paper is therefore threefold:

1. To propose an automatic method for harvesting and sense-annotating
data from the web.

2. To prove the viability and the language-independence of the pro-
posed approach.

3. To make the resulting sense-annotated corpora freely available for
other researchers.

The proposed method relies on the following resources as input: (i) a
sense inventory and (ii) a mapping between the sense inventory in ques-
tion and a web-based resource such as Wiktionary1 or Wikipedia2.

As a proof of concept and to validate its language-independence, this
automatic method has been applied to two languages: To English, a lan-
guage for which several sense-annotated corpora are already available,
as well as to German, a language for which sense-annotated corpora are
still in short supply. The sense inventories are taken from the Princeton
WordNet for English [1] and from the German wordnet GermaNet [2,
3]. In order to be able to compare the resulting resources for the two
languages, the web-harvesting for both languages relies on existing map-
pings of the wordnets in question with the English and German versions
of the web-based dictionary Wiktionary described in [4] and [5], respec-
tively. The resulting resources consist of the web-harvested corpora Web-
CAP (short for: Web-Harvested Corpus Annotated with Princeton Word-
Net Senses) and WebCAGe (short for: Web-Harvested Corpus Annotated
with GermaNet Senses). These resources will be made freely available.3

The remainder of this paper is structured as follows: An overview
of related work is given in Section 2. Section 3 introduces the three
resources WordNet, GermaNet, and Wiktionary used in the present re-
search. The algorithm for automatically harvesting and sense-annotating

1 http://www.wiktionary.org/
2 http://www.wikipedia.org/
3 See http:// www.sfs.uni-tuebingen.de / en / general-and-
computational-linguistics / resources / corpora /webcap
and http:// www.sfs.uni-tuebingen.de / en / general-and-
computational-linguistics/resources/corpora/webcage

CREATING A SENSE-ANNOTATED CORPUS FROM THE WEB 49

textual materials from the web is described in Section 4. Section 5 eval-
uates the proposed approach applied to English and German, and com-
pares the results for the two languages. Finally, the paper concludes with
a summary of the results and with an outlook to future work in Section 6.

2 RELATED WORK

With relatively few exceptions to be discussed shortly, the construction
of sense-annotated corpora has focussed on purely manual methods. This
is true for SemCor, the WordNet Gloss Corpus, and for the training sets
constructed for English as part of the SensEval and SemEval shared task
competitions [6–8]. Purely manual methods were also used for the Ger-
man sense-annotated corpora constructed by Broscheit et al. [9] and Raile-
anu et al. [10] as well as for other languages including the Bulgarian and
the Chinese sense-tagged corpora [11, 12]. The only previous attempts of
harvesting corpus data for the purposes of constructing a sense-annotated
corpus is the semi-supervised method developed by Yarowsky [13], the
knowledge-based approach of Leacock et al. [14], later also used by
Agirre and Lopez de Lacalle [15], and the automatic association of Web
directories (from the Open Directory Project, ODP) to WordNet senses
by Santamarı́a et al. [16].

The latter study [16] is closest in spirit to the approach presented
here. It also relies on an automatic mapping between WordNet senses
and a second web resource. While our approach is based on automatic
mappings between WordNet/GermaNet and Wiktionary, their mapping
algorithm maps WordNet senses to ODP subdirectories. Since these ODP
subdirectories contain natural language descriptions of websites relevant
to the subdirectory in question, this textual material can be used for har-
vesting sense-specific examples.

The approach of Yarowsky [13] first collects all example sentences
that contain a polysemous word from a very large corpus. In a second
step, a small number of examples that are representative for each of the
senses of the polysemous target word is selected from the large corpus
created in step 1. These representative examples are manually sense-
annotated and then fed into a decision-list supervised WSD algorithm as a
seed set for iteratively disambiguating the remaining examples collected
in step 1. The selection and annotation of the representative examples in
Yarowsky’s approach is performed completely manually and is therefore
limited to the amount of data that can reasonably be annotated by hand.

50 V. HENRICH, E. HINRICHS, T. VODOLAZOVA

Leacock et al., Agirre and Lopez de Lacalle, and Mihalcea and Mol-
dovan [14, 15, 17] propose a set of methods for automatic harvesting of
web data for the purposes of creating sense-annotated corpora. By fo-
cusing on web-based data, their work resembles the research described
in the present paper. However, the underlying harvesting methods differ.
While our approach relies on a wordnet to Wiktionary mapping, their ap-
proaches all rely on the monosemous relative heuristic. Their heuristic
works as follows: In order to harvest corpus examples for a polysemous
word, the WordNet relations such as synonymy and hypernymy are in-
spected for the presence of unambiguous words, i.e., words that only ap-
pear in exactly one synset. The examples found for these monosemous
relatives can then be sense-annotated with the particular sense of its am-
biguous word relative. In order to increase coverage of the monosemous
relatives approach, Mihalcea and Moldovan [17] have developed a gloss-
based extension, which relies on word overlap of the gloss and the Word-
Net sense in question for all those cases where a monosemous relative is
not contained in the WordNet dataset.

The approaches of Leacock et al., Agirre and Lopez de Lacalle, and
Mihalcea and Moldovan as well as Yarowsky’s approach provide inter-
esting directions for further enhancing the WebCAP and WebCAGe re-
sources (for some preliminary discussion on such an integration see Sec-
tion 6 below).

In our own previous research, we have addressed the issue of auto-
matically creating sense-annotated corpora for German. The creation of
the resource WebCAGe described in the present paper relies on a map-
ping between GermaNet and the German Wiktionary [5] and is based
on an earlier study [18]. With WikiCAGe, we have built a second sense-
annotated corpus for German [19]. It consists of examples harvested from
the German Wikipedia and was constructed by means of an automatic
mapping between GermaNet and the German Wikipedia.

3 RESOURCES

3.1 WordNet and GermaNet

Both the Princeton WordNet for English [1] and the German wordnet
GermaNet [2, 3] are lexical semantic networks that partition the lexical
space into sets of concepts that are interlinked by semantic relations such
as hypernymy, part-whole relations, entailment, causation, or antonymy.
Wordnets are hierarchically structured in terms of the hypernymy rela-
tion. A semantic concept is modeled by a synset. A synset is a set of

CREATING A SENSE-ANNOTATED CORPUS FROM THE WEB 51

words (called lexical units) where all the words are taken to have (almost)
the same meaning. Thus a synset is a set-representation of the semantic
relation of synonymy, which means that it consists of a list of lexical
units.

The Princeton WordNet has served as inspiration and as best practice
example for the construction of GermaNet as well as for the creation of
other wordnets for a large number of typology diverse languages.4

The coverage of the Princeton WordNet includes the four word classes
of adjectives, adverbs, nouns, and verbs. Its release 3.0 covers 206,941
word senses, which are grouped into 117,659 synsets. GermaNet covers
the three word classes of adjectives, nouns, and verbs. GermaNet’s ver-
sion 6.0 (release of April 2011) covers 93,407 lexical units, which are
grouped into 69,594 synsets.

3.2 Wiktionary

Wiktionary is a web-based dictionary that is available for many languages,
including English and German. As is the case for its sister project Wiki-
pedia, Wiktionary is constructed by contributions of a large number of
volunteers and is freely available. The dictionary provides information
such as part-of-speech, hyphenation, possible translations, inflection, etc.
for each word. It covers, among others, the word categories of adjec-
tives, adverbs, nouns, and verbs. Distinct word senses are distinguished
by sense descriptions, accompanied with example sentences illustrating
the usage of the sense in question. Further, Wiktionary provides relations
to other words, e.g., in the form of synonyms, antonyms, hypernyms, hy-
ponyms, holonyms, and meronyms. Different from WordNet and Germa-
Net, the relations are (mostly) not disambiguated.

Since Wiktionary is a dynamic resource, it is important to clearly
identify the versions used for the present research. The construction of
WebCAP is based on a dump of the English Wiktionary as of April 3,
2010, which consists of 335,748 English words comprising 421,847 word
senses [4]. For WebCAGe, the German Wiktionary as of February 2, 2011
is utilized, consisting of 46,457 German words and 70,339 word senses
[5]. The Wiktionary data is extracted by the freely available Java-based
library JWKTL5.

4 See http://www.globalwordnet.org/ for an informative overview.
5 http://www.ukp.tu-darmstadt.de/software/jwktl

52 V. HENRICH, E. HINRICHS, T. VODOLAZOVA

4 CREATING A SENSE-ANNOTATED CORPUS HARVESTED FROM
THE WEB

The starting point for creating the English WebCAP (short for: Web-
Harvested Corpus Annotated with Princeton WordNet Senses) and the
German WebCAGe (short for: Web-Harvested Corpus Annotated with
GermaNet Senses) resources are existing mappings of senses in WordNet
and GermaNet with Wiktionary senses as described in [4] and [5], re-
spectively. These mappings were created by automatic word sense align-
ment algorithms with high accuracy: 91.5% for English [4] and 93.8%
for German [5]. For German, a manual post-correction step of the auto-
matic alignment was performed that further improved the accuracy of the
mapping.

4.1 Web-Harvesting Sense-Annotated Materials

Fig. 1 illustrates the existing WordNet-Wiktionary mapping using the ex-
ample word crutch. The polysemous word crutch has two distinct senses
in WordNet which directly correspond to two separate senses in the En-
glish Wiktionary6. Each Wiktionary sense entry contains a definition and
one or more example sentences illustrating the sense in question. Since
the target word in the example sentences for a particular Wiktionary sense
(rendered in Fig. 1 in bold face) is linked to a WordNet sense via the sense
mapping of WordNet to Wiktionary, the example sentences are automat-
ically sense-annotated and can be included as part of WebCAP.

An example for the GermaNet-Wiktionary mapping using the exam-
ple word Option is given in Fig. 2. As is the case for the English example
crutch, the polysemous word Option has two distinct senses in Germa-
Net which directly correspond to two separate senses in the German Wik-
tionary. Again, each Wiktionary sense contains one or more example sen-
tences, which can directly be mapped to a specific sense in GermaNet and
thus be sense-annotated and included in WebCAGe. Furthermore, the ex-
amples in turn are linked to external references, including sentences con-
tained in Wikipedia articles (see link in the second Wiktionary sense entry
in Fig. 2) and in other web-based textual sources such as online newspa-
per materials and the German Gutenberg text archive7 (see the topmost
sense entry in Fig. 2).

6 Note that there is one further sense in Wiktionary not displayed here for rea-
sons of space.

7 http://gutenberg.spiegel.de/

CREATING A SENSE-ANNOTATED CORPUS FROM THE WEB 53

Fig. 1. Sense mapping of WordNet and Wiktionary using the example of crutch.

Fig. 2. Sense mapping of GermaNet and Wiktionary using the example of Option.

Additional data for WebCAGe is harvested by following the links
to Wikipedia and other web-based resources referenced by Wiktionary.
Since these links belong to particular Wiktionary sense entries that in
turn are mapped to GermaNet senses, the target words contained in these
materials are automatically sense-annotated.

Notice that the target word often occurs more than once in a given
text. In keeping with the widely used heuristic of “one sense per dis-
course”, multiple occurrences of a target word in a given text are all as-

54 V. HENRICH, E. HINRICHS, T. VODOLAZOVA

signed to the same wordnet sense. An inspection of the annotated data
shows that this heuristic proves to be highly reliable in practice.8

WebCAP and WebCAGe are developed primarily for the purpose of
the word sense disambiguation task. Therefore, only those target words
that are ambiguous are included in these resources. For the German Web-
CAGe, this means that each target word has at least two GermaNet senses,
i.e., belongs to at least two distinct synsets in GermaNet. For the English
WebCAP, each target word has at least two senses in WordNet regardless
of word class; i.e., the target word belongs to at least two distinct synsets
in WordNet which may belong to more than one word class. Taking into
account polysemy across word classes is important for English. In con-
trast to German, this type of conversion involving the same orthography
for different word classes with possibly distinct meanings is a frequent
phenomenon in English.

Both the WordNet-Wiktionary and the GermaNet-Wiktionary map-
pings are not always one-to-one. For example, sometimes one Word-
Net/GermaNet sense is mapped to more than one sense in Wiktionary.
In those cases, all example sentences from all mapped Wiktionary senses
are assigned to the WordNet/GermaNet sense in question.

4.2 Target Word Identification

The next step for creating a sense-annotated corpus is the target word
identification. For highly inflected languages such as German, target word
identification is more complex compared to languages with a simplified
inflectional morphology such as English and requires automatic lemma-
tization. Moreover, the target word in a text to be sense-annotated is not
always a simplex word, but can also appear as subpart of a complex word
such as a compound. Since the constituent parts of a compound are not
separated by blank spaces or hyphens, German compounding poses a par-
ticular challenge for target word identification. Another challenging case
for automatic target word detection in German concerns particle verbs
such as an-kündigen ‘announce’. Here, the difficulty arises when the ver-
bal stem (e.g., kündigen) is separated from its particle (e.g., an) in Ger-
man verb-initial and verb-second clause types.

8 Henrich et al. [18] show that for German the heuristic works correctly in
99.96% of all target word occurrences in the Wiktionary example sentences,
in 96.75% of all occurrences in the external webpages, and in 95.62% of the
Wikipedia files.

CREATING A SENSE-ANNOTATED CORPUS FROM THE WEB 55

Fig. 3. Excerpt from Wikipedia article Radioaktivität ‘radioactivity’ tagged with
the target word Zerfall ‘radioactive decay’.

As a preprocessing step for target word identification, the web-harves-
ted texts are split into individual sentences, tokenized, and lemmatized.
For this purpose, the sentence detector and the tokenizer of the suite of
Apache OpenNLP tools9 and the TreeTagger [20] are used both for En-
glish and German. Further, for German, compounds are split by using
BananaSplit10. Since the automatic lemmatization obtained by the tag-
ger (and the compound splitter) are not a 100% accurate, target word
identification also utilizes the full set of inflected forms for a target word
whenever such information is available in Wiktionary.

Fig. 3 shows a German example of a sense-annotated text for the tar-
get word Zerfall in the sense of ‘radioactive decay’. The text is an ex-
cerpt from the Wikipedia article Radioaktivität ‘radioactivity’ and con-
tains many occurrences of the target word (rendered in bold face). Only
the first occurrence shown in Fig. 3 (marked with a 1 on the left margin)
exactly matches the word Zerfall as is. All other occurrences are either the
genitive form Zerfalls (occurrence 3), the genitive plural Zerfälle (occur-
rence 6), the dative plural Zerfällen (occurrence 5), or part of a compound
such as Kernzerfall, Zerfallsprodukte, or Zerfallsreihe (occurrences 2, 4,
and 7).

9 http://incubator.apache.org/opennlp/
10 http://niels.drni.de/s9y/pages/bananasplit.html

56 V. HENRICH, E. HINRICHS, T. VODOLAZOVA

4.3 Data Encoding

For expository purposes, the data format shown in Fig. 3 has been simpli-
fied compared to the actual XML data encoding used for both WebCAP
and WebCAGe. This data encoding is inspired by the best practise format
for sense-annotated corpora established by the sense-annotated corpora
used in the SensEval and SemEval shared task competitions [6–8].

Fig. 3 illustrates the information provided for each sense-annotated
target word in WebCAGe: (i) a sense ID referring to a lexical unit in
GermaNet, (ii) the lemma of the target word, and (iii) the word class of
the target word. The target word information in WebCAP following ex-
actly the same data format. However, in the case of WebCAP, the sense
information of each target word points to a WordNet synset rather than
a WordNet lexical unit. The reason for this difference in encoding stems
from the WordNet/GermaNet-Wiktionary mappings: The WordNet-Wik-
tionary mapping links synset IDs in WordNet to Wiktionary senses, wher-
eas the GermaNet-Wiktionary mapping links lexical unit IDs in Germa-
Net to Wiktionary senses.

5 EVALUATION AND DISCUSSION OF THE RESULTS

In order to assess the effectiveness of the approach, we examine and
compare the overall sizes of WebCAP and WebCAGe (see Table 1) and
present a precision and recall based evaluation for the algorithm that is
used for automatically identifying the target words in the harvested texts
(see Table 2).

The target words in WebCAP belong to 3628 distinct polysemous
words contained in WordNet, among which there are 934 adjectives, 174
adverbs, 1480 nouns, and 1040 verbs. These words have on average 3.7
senses in WordNet (1.9 for adjectives, 2.6 for adverbs, 4.1 for nouns, and
5.0 for verbs). The target words in WebCAGe belong to 2607 distinct
polysemous words contained in GermaNet (211 adjectives, 1499 nouns,
and 897 verbs) which have on average 2.9 senses in GermaNet (2.4 for
adjectives, 2.6 for nouns, and 3.6 for verbs).

Table 1 shows the overall sizes of WebCAP and WebCAGe: The num-
bers of tagged word tokens (i.e., the target word occurrences), the number
of sentences containing those tags, and the number of overall sentences
(i.e., all sentences in the corpora including those where no target word has
been tagged) separately for the four word classes of adjectives, adverbs,
nouns, and verbs. The numbers for WebCAP describe the Wiktionary

CREATING A SENSE-ANNOTATED CORPUS FROM THE WEB 57

example sentences only, whereas the numbers for WebCAGe are given
separately for the Wiktionary example sentences (in order to be com-
parable with WebCAP), for the external materials, and overall (the sum
of the Wiktionary example sentences and the external materials). Web-
CAGe contains a total of 10750 tagged word tokens whereas WebCAP
only contains 6526 word tokens. Even if we compare the numbers of the
Wiktionary example sentences in WebCAP (6526 tagged word tokens)
with those in WebCAGe (7644 tagged word tokens), i.e., excluding the
external materials from WebCAGe, the German resource is larger than the
English one. This is especially astonishing considering that the English
input resources constitute a multiple of their German counterparts: The
Princeton WordNet contains 1.7 times as many word senses as Germa-
Net and the English Wiktionary contains 6 times as many word senses
as the German Wiktionary (see Section 3). The explanation for the Ger-
man Wiktionary examples outnumbering those for English has to do with
the online instructions given to Wiktionary contributors for English. For
the English Wiktionary, contributors are asked to accompany each word
sense definition by a quotation that illustrates the definition in question
and to compose example sentences on their own only if no suitable quo-
tation sentence can be found.11 Accordingly, the English Wiktionary con-
tains fewer example sentences compared to German.

According to the guidelines for the English Wiktionary, a quotation
is an attested example taken from a literary work or from some other
published textual material. Such quotations are accompanied by the ap-
propriate reference to their textual source. The version of the API that
was used to extract the Wiktionary data does not support the harvesting
of the quotations themselves and the textual sources from which those
quotations are taken. We anticipate that the size of WebCAP would in-
crease significantly if the harvesting functionality is extended to the set
of quotations that contributors are encouraged to provide for each sense
definition. For the German Wiktionary, the situation is different in that
example sentences are a mixture of made-up materials and attested ex-
amples that are often cross-referenced with their online sources and can
thus be harvested automatically by the API.

It is also noticeable that the relative numbers of the different word
classes are rather equally distributed in WebCAP, whereas there are con-

11 See http:// en.wiktionary.org / wiki / Wiktionary:Entry_
layout_explained for the relevant instructions.

58 V. HENRICH, E. HINRICHS, T. VODOLAZOVA

Table 1. Current sizes of WebCAP and WebCAGe.

WebCAP WebCAGe
Wiktionary Wiktionary External All

examples examples materials texts

Number of
tagged
word
tokens

adjectives 1522 575 138 713
adverbs 311 0 0 0

nouns 2596 4103 2744 6847
verbs 2097 2966 224 3190

all word classes 6526 7644 3106 10750

Number of
tagged
sentences

adjectives 1488 565 133 698
adverbs 302 0 0 0

nouns 2526 3965 2448 6413
verbs 2056 2945 224 3169

all word classes 6372 7475 2805 10280

Total
number of
sentences

adjectives 1578 623 66757 67380
adverbs 317 0 0 0

nouns 2726 4184 392640 396824
verbs 2181 3087 152303 155390

all word classes 6802 7894 611700 619594

siderably more texts in WebCAGe contributed by nouns than by adjec-
tives and verbs (see Table 1).12

Apart from the size of the resources in question, the usefulness of
the compiled data sets depends crucially on the quality of the annotated
data. WebCAP and WebCAGe are the results of an automatic harvesting
method. Such an automatic method will only constitute a viable alter-
native to the labor-intensive manual method of creating sense-annotated
corpora if the results are of sufficient quality so that the harvested data set
can be used as is or can be further improved with a minimal amount of
manual post-editing. For the purposes of the present evaluation, a preci-
sion and recall based analysis was conducted, and the tagged target words
are manually verified. For WebCAGe, all textual materials have been
manually checked, while for WebCAP, only the first 1,000 Wiktionary
example sentences for nouns and the first 500 sentences for adjectives,
adverbs, and verbs could be manually verified. Table 2 shows that pre-
cision and recall for all word classes are above 97% in WebCAP and
above 93% in WebCAGe. The only deviations are the results for verbs

12 The reason why there are no tagged adverbs in WebCAGe is due to the Germa-
Net resource which covers adjectives, nouns, and verbs, but no adverbs.

CREATING A SENSE-ANNOTATED CORPUS FROM THE WEB 59

Table 2. Evaluation of the algorithm of identifying the target words.

WebCAGe
WebCAP Wiktionary External All

examples materials texts

Precision

adjectives 97.98% 97.70% 98.39% 98.21%
adverbs 98.68% – – –

nouns 97.62% 98.17% 95.52% 96.18%
verbs 97.88% 97.38% 87.37% 89.80%

all word classes 97.90% 97.32% 93.29% 94.30%

Recall

adjectives 99.19% 97.70% 97.48% 97.54%
adverbs 99.01% – – –

nouns 99.27% 98.30% 95.37% 96.10%
verbs 98.99% 97.51% 96.26% 96.58%

all word classes 99.16% 97.94% 96.36% 96.01%

that occur in WebCAGe, which are slightly lower than the results for the
other word classes. Apart from this one exception, the results in Table 2
prove the viability of the proposed method for automatic harvesting of
sense-annotated data. The average precision for all three word classes is
of sufficient quality to be used as is if approximately 2-5% noise in the
annotated data is acceptable. In order to eliminate such noise, manual
post-editing would be required.

6 CONCLUSION AND FUTURE WORK

This paper has described an automatic method for harvesting and sense-
annotating data from the web. In order to validate the language-indepen-
dence of the approach, the proposed method has been applied to both En-
glish and German. The publication of this paper will be accompanied by
making the two sense-annotated corpora WebCAP and WebCAGe freely
available. In the case of WebCAGe, the automatic sense-annotation of all
target word has been manually verified.

In order to further enlarge the WebCAP and WebCAGe resources, it
would be interesting and worthwhile to use the automatically harvested
sense-annotated examples as the seed set for Yarowsky’s iterative method
for creating a large sense-annotated corpus. Another fruitful direction for
further automatic expansion of WebCAP and WebCAGe consists of using
the heuristic of monosemous relatives used by Leacock et al., by Agirre

60 V. HENRICH, E. HINRICHS, T. VODOLAZOVA

and Lopez de Lacalle, and by Mihalcea and Moldovan. However, we have
to leave both of these matters for future research.13

Finally, we plan to apply our method to further languages. A precon-
dition for such an experiment are existing mappings between the sense
inventories in question and web-based resources such as Wiktionary or
Wikipedia. With BabelNet, Navigli and Ponzetto [21] have created a mul-
tilingual resource that allows the testing of our approach with languages
other than English and German.

ACKNOWLEDGEMENTS We are very grateful to Emanuel Dima, Yana
Panchenko, Klaus Suttner, and Yannick Versley for their support in ob-
taining the external web-based materials. We would like to thank Reinhild
Barkey, Sarah Schulz, and Johannes Wahle for their help with the evalua-
tion. Special thanks go to Christian M. Meyer, who has provided both the
English Wiktionary and the JWKTL API in the same versions that were
used for the WordNet-Wiktionary mapping, and to Tristan Miller, who
provided helpful input to the final data format of WebCAGe. This work
was supported by the CLARIN-D grant of the BMBF and the SFB 833
grant of the DFG.

REFERENCES

1. Fellbaum, C., ed.: WordNet – An Electronic Lexical Database. The MIT
Press (1998)

2. Henrich, V., Hinrichs, E.: GernEdiT – the GermaNet editing tool. In: Pro-
ceedings of the Seventh Conference on International Language Resources
and Evaluation (LREC’10), Valletta, Malta. (2010) 2228–2235

3. Kunze, C., Lemnitzer, L.: GermaNet – representation, visualization, appli-
cation. In: Proceedings of the 3rd International Language Resources and
Evaluation (LREC’02), Las Palmas, Canary Islands. (2002) 1485–1491

4. Meyer, C.M., Gurevych, I.: What psycholinguists know about chemistry:
Aligning Wiktionary and WordNet for increased domain coverage. In: Pro-
ceedings of the 5th International Joint Conference on Natural Language Pro-
cessing (IJCNLP), Chiang Mai, Thailand. (2011) 883–892

5. Henrich, V., Hinrichs, E., Vodolazova, T.: Semi-automatic extension of
GermaNet with sense definitions from Wiktionary. In: Proceedings of the 5th
Language & Technology Conference: Human Language Technologies as a
Challenge for Computer Science and Linguistics (LTC’11), Poznan, Poland.
(2011) 126–130

13 For a description of these approaches, see Section 2.

CREATING A SENSE-ANNOTATED CORPUS FROM THE WEB 61

6. Agirre, E., Marquez, L., Wicentowski, R.: Proceedings of the 4th Interna-
tional Workshop on Semantic Evaluations. Assoc. for Computational Lin-
guistics, Stroudsburg, PA, USA (2007)

7. Erk, K., Strapparava, C.: Proceedings of the 5th International Workshop on
Semantic Evaluation. Assoc. for Computational Linguistics, Stroudsburg,
PA, USA (2010)

8. Mihalcea, R., Chklovski, T., Kilgarriff, A.: Proceedings of Senseval-3: Third
International Workshop on the Evaluation of Systems for the Semantic Anal-
ysis of Text, Barcelona, Spain. Association for Computational Linguistics
(2004)

9. Broscheit, S., Frank, A., Jehle, D., Ponzetto, S.P., Rehl, D., Summa, A., Sut-
tner, K., Vola, S.: Rapid bootstrapping of word sense disambiguation re-
sources for German. In: Proceedings of the 10th Konferenz zur Verarbeitung
Natürlicher Sprache, Saarbrücken, Germany. (2010) 19–27

10. Raileanu, D., Buitelaar, P., Vintar, S., Bay, J.: Evaluation corpora for sense
disambiguation in the medical domain. In: Proceedings of the 3rd Interna-
tional Language Resources and Evaluation (LREC’02), Las Palmas, Canary
Islands. (2002) 609–612

11. Koeva, S., Leseva, S., Todorova, M.: Bulgarian sense tagged corpus. In: Pro-
ceedings of the 5th SALTMIL Workshop on Minority Languages: Strategies
for Developing Machine Translation for Minority Languages, Genoa, Italy.
(2006) 79–87

12. Wu, Y., Jin, P., Zhang, Y., Yu, S.: A Chinese corpus with word sense anno-
tation. In: Proceedings of 21st International Conference on Computer Pro-
cessing of Oriental Languages (ICCPOL’06), Singapore. (2006) 414–421

13. Yarowsky, D.: Unsupervised word sense disambiguation rivaling supervised
methods. In: Proceedings of the 33rd Annual Meeting on Association for
Computational Linguistics (ACL’95), Stroudsburg, PA, USA, Association
for Computational Linguistics (1995) 189–196

14. Leacock, C., Chodorow, M., Miller, G.A.: Using corpus statistics and word-
net relations for sense identification. Computational Linguistics 24(1) (1998)
147–165

15. Agirre, E., Lopez de Lacalle, O.: Publicly available topic signatures for all
WordNet nominal senses. In: Proceedings of the 4th International Confer-
ence on Languages Resources and Evaluations (LREC’04), Lisbon, Portugal.
(2004) 1123–1126

16. Santamarı́a, C., Gonzalo, J., Verdejo, F.: Automatic association of web di-
rectories to word senses. Computational Linguistics 29(3) (2003)

17. Mihalcea, R., Moldovan, D.: An automatic method for generating sense
tagged corpora. In: Proceedings of the American Association for Artificial
Intelligence (AAAI’99), Orlando, Florida. (1999) 461–466

18. Henrich, V., Hinrichs, E., Vodolazova, T.: WebCAGe – a web-harvested cor-
pus annotated with GermaNet senses. In: Proceedings of the 13th Conference
of the European Chapter of the Association for Computational Linguistics
(EACL’2012), Avignon, France. (2012) 387–396

62 V. HENRICH, E. HINRICHS, T. VODOLAZOVA

19. Henrich, V., Hinrichs, E., Suttner, K.: Automatically linking GermaNet to
Wikipedia for harvesting corpus examples for GermaNet senses. Journal for
Language Technology and Computational Linguistics (JLCL) 27(1) (2012)
1–19

20. Schmid, H.: Probabilistic part-of-speech tagging using decision trees. In:
Proceedings of the International Conference on New Methods in Language
Processing, Manchester, UK. (1994)

21. Navigli, R., Ponzetto, S.P.: BabelNet: Building a very large multilingual
semantic network. In: Proceedings of the 48th Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL’10), Uppsala, Sweden. (2010)
216–225

VERENA HENRICH
DEPARTMENT OF LINGUISTICS,

UNIVERSITY OF TÜBINGEN,
WILHELMSTR. 19, 72074 TÜBINGEN, GERMANY

E-MAIL: <VERENA.HENRICH@UNI-TUEBINGEN.DE>

ERHARD HINRICHS
DEPARTMENT OF LINGUISTICS,

UNIVERSITY OF TÜBINGEN,
WILHELMSTR. 19, 72074 TÜBINGEN, GERMANY

E-MAIL: <ERHARD.HINRICHS@UNI-TUEBINGEN.DE>

TATIANA VODOLAZOVA
DEPARTMENT OF LINGUISTICS,

UNIVERSITY OF TÜBINGEN,
WILHELMSTR. 19, 72074 TÜBINGEN, GERMANY

E-MAIL: <TATIANA.VODOLAZOVA@UNI-TUEBINGEN.DE>

IJCLA VOL. 3, NO. 2, JUL-DEC 2012, PP. 63–76
RECEIVED 30/10/11 ACCEPTED 09/12/11 FINAL 08/06/12

Mapping Synsets in WordNet to Chinese

SHI WANG

Chinese Academy of Sciences, China

ABSTRACT

WordNet is a large lexical database which has important influ-
ence on many computational linguistics related applications, but
unfortunately cannot be used in other languages except English.
This paper presents an automatic method to map WordNet synsets
to Chinese, and then generate an homogeneous Chinese Word-
Net. The proposed approach is grounded on the viewpoint that
most cognitive concepts are languages independent, and can be
mapped from one language to another unambiguously. Firstly,
we utilize offline/online English-Chinese lexicons and term trans-
lation system to translate the words in WordNet. One English
word is translated to multiple Chinese words, and one synsets
is translated to a group of Chinese words. We secondly cluster
these Chinese words into synonym-sets according to their senses.
And finally, we select the right synonym-set for given synset. We
regard the proper word-set choosing process as a classifier prob-
lem, and put forward 9 classifying features based on relations
in WordNet, Chinese morphologies, and translation intersections.
Besides, an lexico-syntactic patterns based heuristic rule is com-
bined for higher recall. Experiment results on WordNet 3.0 show
the overall synsets translating coverage of out method is 85.12%
with the precision of 81.37%.

KEYWORDS: WordNet translation, Chinese WordNet, lexical re-
sources, computational linguistics

1 INTRODUCTION

WordNet is a widely-used large-scale lexical database in which nouns,
verbs, adjectives and adverbs are grouped into sets of cognitive concepts

64 SHI WANG

(also called synsets) [1]. Synsets are interlinked by means of conceptual
semantic relationships and then construct a net. Up to now, there are to-
tally 155,287 words and 117,659 synsets in WordNet 3.0.

WordNet has been used in a large range of applications including
natural language process, information retrieval, word sense disambigua-
tion, text classification, image retrieval, etc. Unfortunately, this valuable
resource cannot be directly used in other languages except English.

This paper introduces an automatic method for the construction of
Chinese WordNet by mapping WordNet synsets to Chinese. The root of
our work is that most synsets are languages independent and can be di-
rectly mapped to other languages unambiguously, though words in synsets
may not be explicitly one by one translated. Most of synsets in WordNet,
which express cognitive concepts in real world, can also be expressed
by Chinese. If we map all synsets to Chinese, we obtain Chinese Word-
Net in which synsets are interlinked by identical semantic relations as in
WordNet.

We firstly utilize offline/online English-Chinese lexicons and term
translation system to translate the words in WordNet. One English word
is translated to multiple Chinese words, and one synsets is translated to
a group of Chinese words. We secondly cluster these Chinese words into
synonym-sets according to their senses. And finally, we select the right
synonym-set for given synset.

Regarding the proper word-set choosing process as a classifier prob-
lem, we put forward 9 classifying features based on relations in WordNet,
Chinese morphologies, and translation intersections. Besides, an lexico-
syntactic patterns based heuristic rule is combined for higher recall. Ex-
periment results on WordNet 3.0 show the overall synsets translating cov-
erage of out method is 85.12% with the precision of 81.37%. Experiment
data and final results is available from http://www.knowology.
cn/cicling12/ChWordNet.rar and http://www.cicling.
org/2012/data/33.

The remainder of the paper is organized as follows. In section 2 we
present related work. Section 3 described the proposed method in detail
and section 4 gives its experimental results. Finally, we discuss shortcom-
ings of our work and conclude this paper.

2 RELATED WORK

The Global WordNet Association Association [2] provide a free, public
and non-commercial organization that provides a platform for discussing,

MAPPING SYNSETS IN WORDNET TO CHINESE 65

sharing and connecting WordNets for all languages in the world. The
Association held a conference every two years.

EruoWordNet has been built according to same structure with Word-
Net[3]. EuroWordNet is a multilingual database with WordNet for several
European languages including Dutch, Italian, Spanish, German, French,
Czech and Estonian, and are structured in the same way as the WordNet.

In Asia [4] shows an evaluation of the Korean WordNet. The purpose
of their work is to study how well the manually created lexical taxonomy
is built. Evaluation is done level by level, and the reason for selecting
words for each level is that we want to compare each level and to find
relations between them.

For Chinese, CiLin [5] and HowNet [6] are analogous but very differ-
ent resources. CiLin has a four-layer semantic structure but does not pro-
vide clear relations between words. HowNet is an extra-linguistic knowl-
edge base which unveils inter-concept relations and inter-attribute rela-
tions of the concepts. It uses sememes to explain all the concepts and
relations in it, which is different from the relational analysis methodol-
ogy adopted by WordNet. [7] and [8] integrated CiLin and HowNet with
WordNet.

Because built manually requires great efforts, much work focused on
automatical WordNet translation these years. [9] proposes a method to
map Chinese words into WordNet by integrating five linguistic resources
including English/Chinese sense-tagged corpora, English/Chinese the-
sauruses, and a bilingual dictionary. A Chinese WordNet and a Chinese-
English WordNet are derived from the structures of WordNet.

[10] uses a statistics-based method that looks for the intersection of
word sense to translate of synset of WordNet. [11] describes automatic
techniques for mapping entries to WordNet senses.

[12] examines the validity of cross-lingual lexical semantic relations
inferences by bootstrapping a Chinese WordNet. They claim that such
correspondences must be based on lexical semantic relations, rather than
top ontology or word translations.

3 METHOD

In brief, we firstly translate synsets into a group of Chinese synonym-sets
based on word translations, and then select right one for given synset.
Taking synset “tiger, Panthera tigris – (large feline of forests in most of
Asia having a tawny coat with black stripes; endangered)” for instance,
there are four steps for mapping it to Chinese:

66 SHI WANG

1. Translating each word in synset to Chinese
– tiger→�/tiger,Ú�/male tiger,èD/mob,xD/villain
– Panthera tigris→��/tiger,�/tiger

2. Clustering translations into synonym-sets according to their senses
– tiger→ {�/tiger,Ú�/male tiger}, {èD/mob,xD/villain}
– Panthera tigris→ {��/tiger,�/tiger}

3. Choosing right synonym-sets for synset
– tiger→ {�/tiger,Ú�/male tiger}X,
{èD/mob,xD/villain}×

– Panthera tigris→ {��/tiger,�/tiger}X
4. Merging the right synonym-sets for synset as result

– result = {�/tiger,Ú�/male tiger,��/tiger},

In step 3, symbols X/× represent whether the word-set was chosen
or not. As a result, synset {tiger, Panthera tigris} is mapped to {�/tiger,
Ú�/male tiger,��/tiger}. We note that semantic relationships which
linked with it in WordNet are still unchanged. So if we can map all synsets
to Chinese, we obtain an Chinese WordNet.

3.1 Definitions

Definition 1. For a particular sense ss of an English word, its sense
translation Tss(ss) = {cw1, ..., cwn} is a set of Chinese synonyms which
express its meaning.

Example. {�/tiger, Ú�/male tiger} is a one sense translation for
“tiger”.

Definition 2. For an English word ew with m senses {ss1, ..., ssm}, its
clustered word translations Twd(ew) = {Tss(ss1), ..., Tss(ssm)} is the
set of its senses translations.

Example. Twd(tiger) =
{
{��/tiger,�/tiger}
{èD/mob,xD/villain}

}
Definition 3. Given an English synset esy of m words {ew1, ..., ewm},
its candidate translations CTesy(esy) = Twd(ew1)∪, ...,∪Twd(ewm),
are called synset candidate translations. This the union of its words’
translations.

Example. CTsy

 tiger,
Panthera
tigris

 =

{��/tiger,�/tiger}
{èD/mob,xD/villain}
{��/tiger,�/tiger}

MAPPING SYNSETS IN WORDNET TO CHINESE 67

3.2 Getting Synsets Candidate Translations

Words translating is the base of our whole approach. Besides common
words, there are also lots of multi-word expressions in WordNet, in-
cluding technical terms (“hydroflumethiazide”), fixed expressions (“by
and large”), compound phrases (“car park”), verb-particle constructions
(“look up”), and light verbs (“make a face”), etc., which are all difficult
to translate using traditional dictionaries.

In order to translate as many words as possible, we utilize 8 resources
which are complementary with each other as listed in Table 1.

Table 1. Word translating resources

ID Resource Translations clustered according to senses?
1 American Heritage yes
2 Modern E-C yes
3 Modern Comprehensive E-C yes
4 Concise E-C no
5 Landau E-C common words: no; terms: yes
6 HaiCi Online1 no
7 Google Online2 yes
8 TermTrans [13] yes

When translating words using these resources, we want to cluster
translations into synonym-sets which will be used to form Chinese synsets
as last. Table 1 also shows whether the resources’ translations have al-
ready been clustered or not. Accordingly, we devise words translating
procedure.

– Translating common words. Given an English word, translating it
using dictionaries which have already clustered their translations ac-
cording to word senses, that is, resources 1, 2, 3, and 7. Clustering
translations into word-sets as these dictionaries provide.

– Translating rarely used words offline. If not translated, translat-
ing using Concise E-C dictionary. Concise E-C has the largest size
among all lexicons, and most rarely used words which are not dis-
posed in step 1, such as “harpsichordist”, appear in it. According to
Zipf law [14], these rarely used words often have unique sense. So

1 http://dict.cn
2 http://translate.google.cn

68 SHI WANG

although translations of Concise E-C are not organized well, the one
word translation for rarely used words are adoptable.

– Translating multi-word expressions offline. If not translated, trans-
lating only using the term translations of Landau E-C dictionary.

– Translating rarely used words online. If not translated, translat-
ing using HaiCi online dictionary which will automatically transform
morphology of word. HaiCi can automatically transform morpholo-
gies of words and return related translations. For example, if we look
up “antlered” which is not embodied in HaiCi, it will return the trans-
lation of “antler” and illuminate that “antlered” is the adjective mor-
phology of “antler” meanwhile. This feature can highly improve the
word translation coverage.

– Translating multi-word expressions online. If not translated, trans-
lating using TermTrans. TermTrans can dispose multi-word expres-
sions. And because most multi-word expressions have unique trans-
lation, we only accept the best result TermTrans gives.

We ensure translations are separated according to senses by taking the
one-word translation for Concise E-C dictionary, HaiCi online dictionary,
and discarding translations for common words in Landau E-C dictionary.

Although resources we adopted are carefully selected, it is inevitable
that there are still some words cannot be translated. In experiment section,
we will give translation coverage rate in detail.

As shown in definition 3, synsets candidate translations is the union
of their containing clustered words translations.

3.3 Selecting Sense Translations for Synsets

As presented above, each synset is translated to a group of synonym-sets
in which some are right for the synset and others are not. In a special case
that there is only one candidates synonym-set, there is no other choice be-
sides accepting it. We call such synsets clear synsets. In our experiment,
26.06% synsets in WordNet are clear synsets. For the other synsets, we
managed to select right sense translations.

We regarded the selecting procedure as a classifying problem. For
a candidate synonym-set, we concluded a group of features to judge
whether it is the proper one or not. The features are designed based on re-
lations in WordNet, Chinese morphologies, and translation intersections.
A binary classifier was trained using the features introduced below.

MAPPING SYNSETS IN WORDNET TO CHINESE 69

INNER-INTERSECTION FEATURE Words in a same synset are synonyms,
so their proper translations should share common words. Taking synset
“tiger, Panthera tigris” for example, the right sense translations for the
two words have a common word “�/tiger”. So if two candidate sense
translations have intersections, they are both likely to be the right ones.

We give the explicit measuring function for this feature as follows,
which quantifies the shared words number of candidate sense translations
in a same synset.

FII(Tss(ssi)) =

|{Tss(ssj) ∈ CTsy(esy)|Tss(ssi) ∩ Tss(ssj) 6= ∅|

OUTER-INTERSECTION FEATURES In WordNet, SIMILAR-TO (SIM
for simplicity) is conceptual relationship which reflects two adjective
synsets are similar. For example, “{absorbing, engrossing, fascinating,
gripping, riveting}” is similar to “{interesting}”.

Being similar is close to being synonymous. So, enlightened by the
inner-intersection feature, we proposed outer-intersection feature based
on the hypothesis that similar synsets would share common translations.
To be specified, for a pair of synsets which satisfied SIM relations, if
two candidate translation share some words, the two candidates are both
likely to be right ones.

For other two relations SEE-ALSO (SEE) and VERB-GROUP (GRP),
we can get analogical features. The three outer-intersections features are
calculated as follows:

FSIM(Tss(ssi)) =

|{Tss(ssj) ∈ CTsy(SIM(esy))|Tss(ssi) ∩ Tss(ssj) 6= ∅|

FSEE(Tss(ssi)) =

|{Tss(ssj) ∈ CTsy(SEE(esy))|Tss(ssi) ∩ Tss(ssj) 6= ∅|

FGRP(Tss(ssi)) =

|{Tss(ssj) ∈ CTsy(GRP(esy))|Tss(ssi) ∩ Tss(ssj) 6= ∅|

where {SIM|SEE|GRP}(esy) are the {SIM|SEE|GRP} linked synsets of
esy in WordNet.

70 SHI WANG

LEXICAL CONSTRUCTION FEATURES ATTRIBUTE is a relation be-
tween noun synsets and adjective synsets which express that the adjec-
tive synsets are attributes of noun synsets. For example, {“able”} is an
attribute of {“ability”}.

In Chinese, the nouns plus auxiliary “{/of” is likely to be form its at-
tribute adjectives. We use this word formation rule to judge synsets which
are linked by ATTRIBUTE relations. Taking {“able”} and {“ability”} for
example,

– CTesy({able}) = {
{�/able,,/able,Ì/able},
{��Å{/capable,��{/capable,�b�{/able} }

– CTesy({ability}) = {
{�Å/ability,��/ability,b�/talent,ý�/ability} }

We can easily determine that {��Å{/capable,��{/capable,�
b�{/able} is right for synset {able} because in Chinese, a noun added
suffix “{/of” often constructs the corresponding attribute adjective. In
the same manner, we can also propose four other lexical features based
on HYPERNYM, SISTER, PART-OF and ANTONYM relations.

In Chinese, hypernyms are ofter suffixes of hyponyms (for example,
“ÄÔ/animal” is hypernym and also suffix of “U�ÄÔ/mammal”), and
then sisters are often share common suffixes (“U�ÄÔ/mammal” and
“WqÄÔ/reptiles” are in sister synsets, and also share same suffix liter-
ally). Parts and wholes sometimes contain same prefixes (“Âº/roof” is
a part of “Â�/house”, and they have same prefix), and antonyms can be
obtained by simply adding special prefix like “',:,X/aiti-, un-, no-”
to words.

FATTR(Tss(ssi)) =

|{Tss(ssj) ∈ CTsy(ATTR(esy))|fa(Tss(ssi), Tss(ssj))|

FHYP(Tss(ssi)) =

|{Tss(ssj) ∈ CTsy(HYP(esy))|fh(Tss(ssi), Tss(ssj))|

FSIST(Tss(ssi)) =

|{Tss(ssj) ∈ CTsy(SIST(esy))|fs(Tss(ssi), Tss(ssj))|

MAPPING SYNSETS IN WORDNET TO CHINESE 71

FPART(Tss(ssi)) =

|{Tss(ssj) ∈ CTsy(PART(esy))|fp(Tss(ssi), Tss(ssj))|

FANTI(Tss(ssi)) =

|{Tss(ssj) ∈ CTwd(ANTI(ew))|ft(Tss(ssi), Tss(ssj))|

where f{a,h,s,p,t} are boolean function described above. Detailed calcu-
lating formulas are omitted the sake of brevity.

The above 9 features can be calculated efficiently when classifying
synsets candidate translations. In our experiments, we firstly use these
features to train a classifier. For the candidates which can not classified,
we turn around the following more time-consuming lexico-syntactic pat-
terns rule.

LEXICO-SYNTACTIC PATTERNS FEATURES Lexico-syntactic patterns
[15] have the ability to express semantic relationships between concepts,
such as “X is a kind of Y” or “X such as Y”. In WordNet, all the concep-
tual relations can be expressed by lexico-syntactic patterns. Then for the
ambiguous synsets candidate translations, we can testify them by using
such patterns.

For instance, for synset “tiger”, Tss(ss1)={�/tiger,Ú�/male tiger}
and Tss(ss2){èD/mob, xD/villain}, if we can obtain its hypernym
synsets {bigcat, cat} whose synset candidate translation is {�/cat,�
)ÄÔ/felid}, then we can tell ss1 is the required one by indexing
sentences like “�4�«�)ÄÔ/tiger is a kind of felid” from corpus.

Using web search engines, we can quickly get the number of snip-
pets which contain certain sentences. In our experiments, we use Google
and then restrict our patterns to abide by Google query term expressions.
Table 2 displays some of typical patterns we conclude, where c1 stands
for the words in the source synsets and c2 represents the target synsets’
words for a certain relation in WordNet. The double quotation marks that
bracket the patterns can make Google search them as whole units, and
the wildcards ‘*’ can represent any single word.

For an synset, we firstly find its relative synsets. After filling each
word in initial synset and related synsets to corresponding patterns ac-
cording to their relationship, we feed the query string to Google and judge
synset translation by return web pages number.

We did not use the hitting page numbers as features to train a classifier
because it is very time costing to get all the numbers for all patterns. A

72 SHI WANG

Table 2. Some lexico-syntactic patterns for synset disambiguation

ID Relations Patterns Patterns in English
01 SYNSET HYPERNYM c14�*c2 c1 is a * c2
02 c2�c1 c2 such as c1
03 INSTANCE HYPERNYM c1a�c2 c1 belongs to c2
04 c2Í�c1 c2 is derived from c1
05 MEMBER-OF c14c2�� c1 is member of c2
06 c2¥{c1 c1 in c2
07 SUBSTANCE-OF c14c2{ÄI c1 is substance of c2
08 c2�c1èÄ c2 is made of c1
09 PART-OF c14c2{�\I c1 is a part of c2
10 c2�c1�Ä c2 is composed of c1
11 ATTRIBUTE c14c2{ c1 is c2
12 c2{c1 c1 of c2
13 CAUSE c1s�c2 c1 cause c2
14 c24O�c1 c2 is caused by c1

empirical method is adopted. That is, if the hitting page number exceeds
an experiential threshold for a particular pattern, we accept the candidate
translation. If we can query Google or some other huge corpus quickly,
we can further use the hits number as features to train the classifier.

3.4 Merging Selected Sense Translations

Different dictionaries generate different translations for a same word. For
example, for word “tiger”, Concise E-C dictionary translates its one sense
to {�/tiger,Ú�/male tiger}, while Modern Comprehensive E-C dictio-
nary gives {��/tiger,�/tiger}.

So, multi sense translations will be accepted in the candidates choos-
ing procedure. We merged these synonym-sets to generate a compact and
integrative translation because they are actually represents same mean-
ing. After merging, we get the right translations for synsets.

In word translating procedure, we have ensured each word-set are
synonyms. Being synonymous is transitive for words. So if we merge the
word-sets which share common words, the new formed word-set is also
a synonym-set.

Our merging strategy is very strict. Another common used method
is based on edit distance, that is, merging word-set which have short
edit-distances. In experiment, such a relax strategy performs bad. Most
Chinese words are very short and might be very different in sense even

MAPPING SYNSETS IN WORDNET TO CHINESE 73

they are very similar in morphology. For example, “��/tiger” and “�
�/teacher” have short edit distance 1, but are completely different in
meaning.

4 EXPERIMENT

4.1 Word Translation Results

Table 3 shows the word translation percentage for all resources listed in
Table 1.

Table 3. Word translation coverage of all the resources

ID Resource Coverage
1 American Heritage Dictionary 35.52%
2 Modern E-C dictionary 32.40%
3 Modern comprehensive E-C dictionary 25.81%
4 Concise E-C dictionary 19.75%
5 Landau E-C dictionary 20.14%
6 HaiCi online dictionary 9.55%
7 Google online dictionary 38.72%
8 TermTrans Tool 6.10%

Average 84.33%

From Tabel 3, we can see that although every distinct resource’s cov-
erage is low, the total coverage can reach 84.33%. That means our re-
sources are complementary with each other. And excluding TermTrans,
all the other dictionaries are manually compiled and with very high pre-
cision.

Errors are mainly caused by the mixing of translations with differ-
ent senses. For example, in Modern E-C dictionary, word “forefront” are
translated to be “!�Á/the part in the front or nearest the viewer,!
�"/the position of greatest importance or advancement”, but these two
words are distinguished in WordNet. Table 3 also demonstrates that merg-
ing sense translations does not generate too much errors.

4.2 Synset Candidate Translations Classifying Results

For different kinds of synsets (noun, verb, adjective and adverb ones),
they can utilize different features. Inter-intersection features for VERB-
ALSO relations are not available for Noun synsets, for example. So when

74 SHI WANG

constructing trainset, in order to make sure that each feature can be used,
we randomly select 200 positive and 200 negative samples which have
valid feature value for each feature. There are 1,500 positive and 1,500
negative samples at all, making up about 0.18% for all sense translations.

We adopted NativeBayes, J48, and AdaboostM1 to train the classifier.
The labels are 1/0 and results are verified with 10 cross-validation. The
performance for all kinds of synsets are shown in Table 4.

Table 4. Result of classifier

Synset Label NaiveBayes J48 AdaboostM1
p r F1 p r F1 p r F1

Noun 1 0.921 0.729 0.814 0.85 0.904 0.876 0.863 0.866 0.8
0 0.657 0.893 0.757 0.816 0.726 0.768 0.768 0.764 0.766

Verb 1 0.854 0.818 0.836 0.873 0.758 0.812 0.854 0.78 0.816
0 0.861 0.889 0.875 0.827 0.912 0.867 0.837 0.894 0.865

Adj 1 0.883 0.852 0.867 0.858 0.887 0.872 0.878 0.856 0.867
0 0.811 0.849 0.829 0.837 0.798 0.817 0.813 0.84 0.827

Adv 1 0.904 0.853 0.878 0.824 0.891 0.856 0.892 0.853 0.872
0 0.801 0.868 0.833 0.819 0.721 0.767 0.798 0.85 0.823

From Table 4, we can see performances of the three classifier are sim-
ilar. This demonstrates the features are well selected. NaiveBayes perfor-
mance better in verb, adjective, and adverb synsets, while J48 work well
for noun synsets. Accordingly, we use J48 to disambiguate noun synsets,
and take NaiveBayese for the other ones. Table 4 give their results.

Table 5. Performance of classifier

Noun Verb Adj Adv Average
Precision 82.14% 78.35% 81.22% 81.49% 81.37%
Coverage 86.71% 80.16% 83.91% 82.35% 85.21%

Average Words Number 4.13 6.25 6.00 3.01 4.62

4.3 Lexicon-Syntactic Patterns Results

Lexicon-syntactic patterns based disambiguation is time consuming. We
did not take it as a classifier feature, but used as an heuristic rule. If one

MAPPING SYNSETS IN WORDNET TO CHINESE 75

pattern hits enough web pages, the candidate are accepted. Performance
of this way is given in Table 6 with the former two ways.

Table 6. Performance of lexical patterns

Clear synsetsx Classifier Lexical patterns
Precision 99.10% 81.37% 91.34%
Coverage 26.06% 47.21% 18.68%

5 CONCLUSION AND FUTURE WORK

WordNet is an important resource for many applications but restricted to
English, so translating it to Chinese is valuable. Our work is ground on
the argument that concepts can be translated from one language to an-
other expressed by synsets. The two major problems for the work are to
translate English words and to choose the right translation for synsets.
We firstly translate all the words in WordNet using three kinds of com-
plementary resources, and then disambiguate the translation of synsets
using a classifying combined with heuristic rules. Experiments show that
our method can translate 85.12% of the synset in WordNet 3.0 with a
precision of 81.37%.

Our future work will concentrate on how to improve the translate cov-
erage of words, especially the multi-word expressions, in WordNet.

ACKNOWLEDGEMENTS This work was supported by the National Natu-
ral Science Foundation of China, under grants No. 61203284, 60573063,
60573064, 60773059, 61035004, the National High Technology Research
and Development Program (863 Program) of China under No. 2007AA01
Z325, and National Social Science Foundation of China under grant No.
10AYY003.

REFERENCES

1. Miller, G.A.: WordNet: A lexical database for English. Commun. ACM 38
(1995) 39–41

2. Global WordNet Association. http://www.globalwordnet.org
(2000)

76 SHI WANG

3. Piek, V.: EuroWordNet: A multilingual database with lexical semantic net-
works. Dordrecht: Kluwer Academic Publishers (1998)

4. Altangere, C., Ho-Seop, C., Cheol-Young, O., Hwa-Mook, Y.: On the evalu-
ation of Korean WordNet. In: TSD 2007. (2007) 123–130

5. Mei, J., Zhu, Y., Gao, Y., , Yin, H.: TongYiCiCiLin. Shanghai Dictionary
Press (1982)

6. Dong, Z., Dong, Q. http://http://www.keenage.com (2000)
7. Chen, H.H., Lin, C.C., Lin, W.C.: Construction of a Chinese-English Word-

Net and its application to CLIR. In: Proceedings of the Fifth International
Workshop on Infor-mation Retrieval with Asian Languages. (2000)

8. Dorr, B.J., Levow, G.A., Lin, D.: Building a Chinese-English mapping be-
tween verb concepts for multilingual applications. In: Proceedings of 4th
Conference of the Association for Machine Translation. (2000)

9. Chen, H.H., Lin, C.C., Wen, C.L.: Building a Chinese-English WordNet for
translingual applications. ACM Transactions on Asian Language Informa-
tion Processing 1(2) (2002) 103–122

10. Liu, M.: A research on translating WordNet nodes to Chinese. Master’s
thesis, DongBei University (2003)

11. Green, R., Pearl, L., Dorr, B.J., Resnik, P.: Mapping lexical entries in a verbs
database to WordNet senses. In: ACL 2001. (2001) 244–251

12. Huang, C.R., Tseng, I.J.E., Tsai, D.B.S.: Translating lexical semantic re-
lations: The first step towards multilingual WordNets. In: COLONG 2002.
(2002)

13. Fang, G., Yu, H., Nishino, F.: Chinese-english term translation mining based
on semantic prediction. In: ACL 2006. (2006)

14. Manning, C.D., Schütze, H.: Foundations of Statistical Natural Language
Processing. MIT Press (1999)

15. Hearst, M.A.: Automatic acquisition of hyponyms from large text corpora.
In: COLING 1992. (1992) 539–545

SHI WANG
KEY LABORATORY OF INTELLIGENT INFORMATION PROCESSING,

INSTITUTE OF COMPUTING TECHNOLOGY,
CHINESE ACADEMY OF SCIENCES,

BEIJING, 100190, CHINA
E-MAIL: <WANGSHI@ICT.AC.CNX>

IJCLA VOL. 3, NO. 2, JUL-DEC 2012, PP. 77–92
RECEIVED 30/10/11 ACCEPTED 09/12/11 FINAL 08/06/12

Corpus Materials for Constructing Learner
Corpus Compiling Speaking, Writing,

Listening, and Reading Data

KATSUNORI KOTANI,1 TAKEHIKO YOSHIMI,2
HIROAKI NANJO,2 AND HITOSHI ISAHARA3

1 Kansai Gaidai University, Japan
2 Ryukoku University, Japan

3 Toyohashi University of Technology, Japan

ABSTRACT

This paper presents the corpus material of a learner corpus called
the I-Learner corpus consisting of text and sounds that reflect the
proficiency of learners of English as a foreign language with respect
to speaking, writing, reading, and listening, along with the types and
quantity of the corpus materials. In constructing a learner corpus, a
prerequisite is to prepare corpus materials that properly reveal
learners’ second language ability. Most conventional learner
corpora use corpus materials taken from linguistic exercises such as
essay writing and speaking exercises. The I-Learner corpus is the
first corpus that collects the four-modality data, and the focus of this
study is the selection of its material.

KEYWORDS: Learner corpus, corpus materials, four-modality data

1. INTRODUCTION

Learner corpora, which are defined as a collection of texts produced by
learners of a second or foreign language [1], have contributed to the
advancement of research on second language learning and teaching by
providing text and sounds to analyze which linguistic items, such as
vocabularies and grammars, learners adequately or inadequately use.

 K. KOTANI, T. YOSHIMI, H. NANJO, H. ISAHARA 78

Some learner corpora [2, 3] are annotated with information tags on
errors that learners made, thus making it possible to directly analyze
learners’ errors and/or compare the errors across learners of different
proficiency levels. Learner corpora can also be used as a language
resource in constructing computer-based language learning or teaching
systems by machine learning algorithms [4].

The construction of a learner corpus consists of three steps: design,
data collection, and analysis of collected data. The design step
determines variables of a corpus. For example, the focus could be on
language-related variables, task-related variables, and/or learner-related
variables [5]. In the data collection step, raw text, sound, and
information to be annotated with the text, such as learner information
and error information, are collected. In the analysis of collected data
step, basic analyses are performed, such as descriptive statistics
analysis or qualitative analysis, to confirm the validity of the collected
data.

Most learner corpora consist of text and sounds that reflect learners’
proficiency in either writing [6] or speaking [2], but some include text
that reflects learners’ proficiency in the multiple modalities of speaking,
writing, reading, and listening [7, 8, 9]. Wen et al. [7] constructed a
learner corpus consisting of text that reflects learners’ proficiency in
speaking and writing. The speaking data included sounds and text
transcribed from what learners had verbalized in speaking exercises,
and the writing data included text from learners’ essays. Meurers et al.
[8] constructed a learner corpus consisting of text that reflects learners’
reading and writing proficiency. The data included text written by
learners as answers for comprehension questions in reading exercises.
Kotani et al. [9] constructed a learner corpus, called the I(ntegrated)-
Learner corpus, consisting of text and sounds that reflect learners’
speaking (with a focus on pronunciation), writing, reading, and
listening proficiency. According to them [9], one of the goals of this
corpus is to provide a language resource for the analysis of learners’
language use based on the four modalities because there is no other
learner corpus that currently does so.

In constructing any learner corpus, the basic prerequisite is to select
corpus materials that properly reveal learners' second language ability.
Therefore, previous corpora have used materials taken from linguistic
exercises such as essay writing [6, 7] and language tests [2, 7, 8, 9].
However, we feel that the selection of the corpus material of the I-
Learner corpus [9] should be described in more detail because it is the
first corpus that collects the four modality data. Therefore, in this paper

CORPUS MATERIALS FOR CONSTRUCTING LEARNER CORPUS 79

we discuss its design at length and also describe the types and quantity
of the corpus materials.

2. I-LEARNER CORPUS

2.1. Fundamental Design

The I-learner corpus [9] was constructed on basis of the following
design criteria: modality, context, technicality, data to be collected,
learner, and task. In this subsection, we describe the modality, context,
technicality, and data to be collected; the other criteria are described in
the following subsections.

The modality consists of speaking, writing, listening, and reading.
The context is the expository language used in daily-life contexts. The
technicality is kept as low as possible in order to focus on linguistic
proficiency. The data to be collected consist of language production
data, language comprehension data, and mental language processing
data.

The data to be collected are summarized in Table 1. The language
production data, which show what the learners have produced, include
both the sound of speaking and written sentences. The language
comprehension data include the comprehension rate, which shows how
well the learners comprehend the content of a text. The mental
language processing data, which show how learners produced or
understood sentences and/or sounds , include the speaking time, the
writing time, the reading time, and the subjective judgment score,
which is obtained by using a psychological data collection method [10]
and shows what the learners thought as they were using English. The
subjective judgment score of speaking on a five-point scale represents
the difficulty of a sentence for the learner who pronounced that
sentence. The subjective judgment score of writing on a five-point scale
represents the comprehensibility of an English sentence written by a
learner. The subjective judgment scores of listening and reading on a
five-point scale represent the comprehensibility of a sentence for a
learner who listened to or read the sentence.

 K. KOTANI, T. YOSHIMI, H. NANJO, H. ISAHARA 80

Table 1. Data to be collected

Language
production data

Language
comprehension data

Mental language
processing data

Speaking Sound —
Speaking time
Subjective judgment score

Writing Sentence —
Writing time
Subjective judgment score

Listening — Comprehension rate Subjective judgment score

Reading — Comprehension rate
Reading time
Subjective judgment score

2.2. Learners

Learners of English as a foreign language were recruited, with
candidates submitting their scores of the Test of English for
International Communication (TOEIC) taken within a year of the start
of the data collection. Ninety learners were accepted so as to obtain the
same number of learners in each of the three proficiency levels:
beginner (N = 30, TOEIC score of 280–495), intermediate (N = 30,
TOEIC score of 500–725), and advanced (N = 30, TOEIC score of
730–985). The learners’ first language was Japanese, and their
education level was a university degree or higher, meaning that all had
at least 36 months learning experience.

2.3. Tasks of Data Collection

The learners completed tasks (language tests of the four modalities) in
the following order: listening, reading, speaking, and writing. For all
tasks, they used a data collecting tool that displayed a sentence on a
computer screen. This tool kept track of time when a learner verbalized,
wrote, and read each sentence. It provided comprehension questions
and saved answers for the listening and reading tasks. In the writing
tasks, it displayed pictures and questions as well as blank spaces in
which to write sentences. It kept a subjective judgment score during all
the tasks.

In the listening tasks, the learners listened to four news articles that
were read aloud by native speakers of English. They judged the
difficulty of comprehending a sentence after listening to it. When they

CORPUS MATERIALS FOR CONSTRUCTING LEARNER CORPUS 81

finished listening to a news article, they answered five comprehension
questions.

In the reading task, the learners silently read four news articles
(which were different from the ones used in the listening task). They
judged the difficulty of comprehending a sentence after reading it.
When they finished reading a news article, they answered five
comprehension questions. The use of a dictionary was prohibited, and
the learners were allowed to read a sentence only once.

In the speaking task, the learners verbalized sentences from the four
news articles that were used in the reading task. The same news articles
were used so that the learners could grasp the content before the task
began, thus enabling them to focus on pronunciation. They judged the
difficulty of speaking a sentence after verbalizing it. There were no
comprehension questions, unlike in the listening and reading tasks,
because the focus was entirely on pronunciation, not comprehension.

In the writing task, the learners first described four pictures that
comprised a series of events. They were assigned to write at least five
sentences per picture. Next, they were provided with 20 questions,
which they then answered. Here, they were assigned to write at least
one sentence per answer. They judged the comprehensibility of a
sentence after writing it. The use of a dictionary was prohibited, and the
learners were not permitted to rewrite a sentence after they had moved
on to another.

2.4. Collected Data

There were 90 learners who listened to 80 sentences from 4 news
articles and answered 5 comprehension questions for each news article.
Therefore, the listening data consisted of 7200 sentences annotated
with a subjective judgment score and 360 examples of comprehension
rate.

The reading data consisted of 7200 sentences annotated with the
reading time and the subjective judgment score and 360 examples of
comprehension rate. The total reading time was approximately 25.5
hours.

The speaking data consisted of 7200 sentences annotated with the
speaking time and the subjective judgment score. The total speaking
time was approximately 28.9 hours.

The 90 learners were asked to write at least 40 sentences for the
writing task, so the writing data consisted of at least 3,600 sentences
annotated with the writing time and the subjective judgment score. The

 K. KOTANI, T. YOSHIMI, H. NANJO, H. ISAHARA 82

total writing time for the picture description was approximately 28.4
hours and that for answering questions was 30.2 hours.

3. MATERIALS OF I-LEARNER CORPUS

The materials used in the I-Learner corpus [9] were selected on basis of
the design criteria (modality, context, technicality, data to be collected,
learner, and task) described in Section 2.

3.1. Material Design

In compiling the learners’ language data, we determined the design of
corpus materials to emphasize the contrast between success and failure
in that data. We designed the corpus materials to include three types of
linguistic properties that enhance the contrast: the syntactic property of
sentence length, semantic property of question type, and discourse
property of information structure.

The speaking, listening, and reading materials were designed to
include different syntactic difficulties and semantic difficulties. We
used sentence length as an index of syntactic difficulties. Sentence
length leads to difficulty in comprehending or processing linguistic
objects, as previous research on readability [11] has shown. Thus, the
news articles in the speaking, listening, and reading materials should
contain different sentence lengths.

We used the type of question, such as true questions, false questions,
and content questions, as an index of semantic difficulties. The effect of
the type of question on the learners’ language data should be examined
in future work, but we expect that the question types cause the
following differences in semantic difficulty. Content questions should
be more difficult to answer than true questions and false questions
because answers cannot be determined in a binary way (true or false).
The language learners have to recognize what the article is about to
answer content questions. In contrast, answers to true questions and
false questions can be determined in a binary way. In addition, false
questions should be more difficult than true questions to answer
because deciding the correct answer to false questions, which needs
negative evidence, requires more logical thinking than finding positive
evidence.

CORPUS MATERIALS FOR CONSTRUCTING LEARNER CORPUS 83

The writing materials were designed to include different discourse
difficulties and semantic difficulties. We used the discourse direction
and the number of people in a picture [12] as an index of discourse
difficulties. The effect of the discourse difficulties on the learners’
language data should be examined in future work, but we expect that
the discourse direction and the number of people in a picture cause the
following difference in discourse difficulty. When describing these
pictures, the learners have to represent the situation following the
discourse direction on the basis of a proper information structure [13].
That is, when a new person appears, the person should be treated as
new information. However, this person should be treated as old
information in the subsequent picture. Thus, multiple pictures in the
writing materials should represent a series of events, and different
combinations of people should appear in each picture.

We used the type of question, such as polar or wh-interrogatives, as
an index of semantic difficulties. The effect of the type of question on
the learners’ language data should be examined in future work, but we
expect that the question types cause the following difference in
semantic difficulty. Questions asking for descriptive comments should
be the most difficult for which to write answers. The second most
difficult should be wh-interrogative-type questions, and the least
difficult should be polar-interrogative-type questions. Thus, questions
in the writing materials should include these three types of questions.

3.2. Speaking, Listening, and Reading Materials

The speaking, listening, and reading materials of the I-Learner corpus
were compiled from news articles taken from the Voice of America
(VOA) site (http://www.voanews.com). The articles were chosen in
two steps. In the first step, special sections for English learners and
editorial sections were chosen from the various ones available on VOA.
The articles in the former should be easier than those in the latter. This
is because articles in special sections for English learners in VOA are
written in short, simple sentences that contain only a core vocabulary of
1,500 words and no idiomatic expressions, according to VOA, while
articles in editorial sections are written for native English speakers in
sentences that have no restrictions. In the second step, articles were
chosen according to conditions on the article size (number of words in
an article) being approximately 350 words (within plus or minus 5%)
and on the number of sentences in an article being 25 sentences for

 K. KOTANI, T. YOSHIMI, H. NANJO, H. ISAHARA 84

easy articles and 15 sentences for difficult articles. These conditions
excluded the possibilities that easy articles contained more long
sentences and that difficult articles contain more short sentences.

The same articles are used when compiling the speaking and reading
data. First, the learners silently read four articles (two easy and two
difficult ones), and then they read aloud those same articles. The first
reading enables the learners to grasp the content of the articles. Thus,
when reading aloud, they can focus on the pronunciation. Examples of
an easy and a difficult article, respectively, are shown in Appendices 1
and 2. When reading an article silently or aloud, the learners see this
article on a computer screen sentence by sentence.

The listening data are also compiled using four articles (two easy
and two difficult ones). These articles were taken from the same
sections of the VOA site as those used in the speaking and reading
tasks. In addition, these articles met the conditions for the article size
and number of sentences in an article. In the listening task, the learners
listen to VOA reporters.

The linguistic properties of the articles used in the speaking and
reading tasks are shown in Table 2, and the properties of the articles in
the listening task are shown in Table 3. These tables provide the
difficulty of the article (Difficulty: Easy or Difficult), the title of the
article (Title), the number of words in an article (W), the number of
words in the shortest sentence (Min), the number of words in the
longest sentence (Max), the average number of words in the sentences
(Mean), and the standard deviation (SD).

A one-way analysis of variance (ANOVA) was conducted to
examine whether the sentence length (number of words per sentence),
as an index for syntactic difficulties, differed between the easy and
difficult articles. The article difficulty was determined based on the
type of sections: special sections for English learners or editorial
sections for native English speakers. There was a significant difference
in the sentence length at the p<.01 level [F(3, 76)=14.16] in the articles
for the speaking and reading tasks. Post-hoc comparisons using the
Tukey honestly significant difference (HSD) test indicated that the
mean values of the sentence lengths were significantly different
between all the pairs of easy articles (E1, E2) and difficult articles (D1,
D2). However, there was no significant difference between E1 and E2,
or between D1 and D2.

CORPUS MATERIALS FOR CONSTRUCTING LEARNER CORPUS 85

Table 2. Properties of speaking and reading materials

Article

ID
E1 E2 D1 D2

Difficulty Easy Easy Difficult Difficult

Title
Recruiters Help
US Colleges Find
Foreign Students

Book Predicts
Jump in High
School Courses
Online

U.S. Designates
Al-Quso
Terrorist

Ending
Impunity In
the Congo

W 337 356 359 348
Min 7 5 12 11
Max 23 22 37 42
Mean 13.5 14.2 23.9 23.2
SD 4.6 4.2 7.7 10.1

Table 3. Properties of listening materials

Article ID E3 E4 D3 D4
Difficulty Easy Easy Difficult Difficult
Title Studying in

the US: A
Lesson in
Personal
Finance, Part
2

Studying in
the US:
Grading
Grades

Educating
Marginalized
Children

Outreach To
Muslims

W 358 341 357 353
Min 5 6 8 10
Max 22 20 39 38
Mean 14.3 13.6 23.8 23.5
SD 4.8 3.7 8.9 7.4

There was also a significant difference in the sentence length at the
p < 0.01 level [F(3, 76) = 16.22] in the articles for the listening task.
Post-hoc comparisons using the Tukey HSD test indicated that the
mean values of the sentence lengths were significantly different
between all the pairs of easy articles (E3, E4) and difficult articles (D3,
D4). However, there was no significant difference between E3 and E4,
or between D3 and D4. Taken together, these results show that the easy
articles contain shorter sentences than the difficult articles.

The listening and reading materials included questions created by
the author of this paper following question formats [14]. The questions

 K. KOTANI, T. YOSHIMI, H. NANJO, H. ISAHARA 86

are categorized into three types: a question asking what is true, e.g.,
“Which of the following is mentioned?” (true question); what is false,
e.g., “Which of the following is NOT mentioned?” (false question); and
what the content is about, e.g., “According to the passage, why or
how…?” (content question). Each article has two true questions, two
false questions, and one content question. Appendix 3 illustrates the
questions for the easy article shown in Appendix 1. The questions are
multiple choices with four answer choices.

3.3. Writing Materials

In the picture description task, the learners describe a series of events.
The events are represented in a series of four pictures (Appendix 4),
and thus this material represents the discourse direction. Four people
appear in these pictures. In picture A, a woman and a man appear. In
picture B, a different man appears with the woman and man who
appeared in picture A, for a total of three people. In picture C, only the
two men appear. In picture D, a different woman appears with the other
three people.

Given the discourse difficulties of the order of pictures and the
number of people, describing picture D should be most difficult. The
second-most difficult picture should be picture B or C. If the order of
pictures contributes more to the difficulty of describing pictures, the
difficulty of picture C would be greater than that of picture B. In
contrast, if the number of people has a greater effect on the difficulty of
describing pictures, picture B would be more difficult than picture C.

In the question answering tasks, the learners answer questions about
their own learning profiles [15] and on their computer literacy [16]
(Appendix 5). The sentences from 1 to 15 ask about the learners’
learning profiles, and those from 16 to 20 ask about their computer
literacy. Of these sentences, 13 are wh-interrogative-type and 5 are
polar-interrogative-type questions. The remaining two sentences are not
interrogatives; instead, they ask for descriptive comments.

4. CONCLUSION

The present paper introduced the corpus materials of the I-Learner
corpus, which collected learners’ language data for the four modalities
of speaking, writing, listening, and reading. These materials were

CORPUS MATERIALS FOR CONSTRUCTING LEARNER CORPUS 87

designed to include different linguistic difficulties. The writing
materials included different semantic difficulties and discourse
difficulties: the type of question, the discourse direction, and the
number of people in a situation. The speaking, listening, and reading
materials included different semantic difficulties and syntactic
difficulties: the type of question and the sentence length.

We further noted the expected effects of these linguistic difficulties
on the learners’ language data. However, we have not examined
whether these effects appear in that data. This examination will provide
fundamental information for assessing the validity of the corpus for
future studies. Thus, one remaining issue is to examine whether the
corpus materials actually emphasize the contrast between success and
failure in learners’ language data after compiling the relevant data.

REFERENCES

1. Tono, Y.: Integrating Learner Corpus Analysis into a Probabilistic Model

of Second Language Acquisition. In P. Baker (ed.) Contemporary Corpus
Linguistics. Continuum International Publishing Group, London, pp. 184–
203 (2009).

2. Izumi, E., Uchimoto, K., Isahara, H. (eds.): Nihonjin 1200 Nin no Eigo
Spiking Koopasu [A Speaking Corpus of 1200 Japanese Learners of
English]. ALC Press, Tokyo, Japan (2004).

3. Gammon, M.: High-order Sequence Modeling for Language Learner Error
Detection. Proceedings of the 6th Workshop on Innovative Use of NLP for
Building Educational Applications, pp. 180—189, (2011).

4. Kotani, K., Yoshimi, T., Kutsumi, T., Sata, I., Isahara, H.: EFL Learner
Reading Time Model for Evaluating Reading Proficiency. CICLing 2008,
pp. 655–664 (2008).

5. Tono, Y.: Learner Corpora: Design, Development and Applications. Paper
presented at the Corpus Linguistics 2003 Conference (CL 2003), (2003).

6. Granger, S., Dagneaux, E., Meunier, F., Paquot, M.: International Corpus
of Learner English, version 2. Presses Universitaires de Louvain, Louvain-
la-Neuve, Belgium, (2009).

7. Wen, Q., Liang, M., Yan, X.: Spoken and Written Corpus of Chinese
Learners (SWECCL) 2.0. Foreign Language Teaching and Research Press,
Beijing, China, (2008).

8. Meurers, D., Ott, N., Ziai, R.: Compiling a Task-based Corpus for the
Analysis of Learner Language in Context. In Sam Featherston and Britta
Stolterfoht, editors, Proceedings of Linguistic Evidence 2010, pp. 214–217,
(2010).

 K. KOTANI, T. YOSHIMI, H. NANJO, H. ISAHARA 88

9. Kotani, K., Yoshimi, T.: A Scoring Method for Second Language Writing
based on Word Alignment. Proceedings of Pacific Association for
Computational Linguistics (PACLING) 2011, (2011).

10. Lewis, C. H.: “Thinking Aloud” Method in Cognitive Interface Design.
Technical Report IBM RC-9265, (1982).

11. Kate, R. J., Luo, X., Patwardhan, S., ranz, M., Florian, R., Mooney,R. J.,
Roukos, S., Welty, C.: Learning to Predict Readability Using Diverse
Linguistic Features. Proceedings of the 23rd International Conference on
Computational Linguistics (Coling 2010), pp. 546–554, (2010).

12. McCarthy, M.: Discourse Analysis for Language Teachers. Cambridge
University Press, Cambridge, (1991).

13. Prince, E. F.: Toward a Taxonomy of Given-new Information. In Peter
Cole, editor, Radical Pragmatics, Academic Press, New York, pp. 223–255,
(1981).

14. Nation, P., Malarcher, C.: Reading for Speed and Fluency. Compass
Publishing, Seoul, Korea, (2007).

15. Ehrman, M. E.: Understanding Second Language Learning Difficulties.
SAGE Publications, London, (1996).

16. Eignor, D., Taylor, C., Kirsch, I., Jamieson, J.: Development of a Scale for
Assessing the Level of Computer Familiarity of TOEFL Examinees.
Research Reports RR98-7, Educational Testing Service, Princeton, New
Jersey, (1998).

APPENDICES

Appendix 1. Easy Article in Speaking and Reading Tasks

01: College prices in the United States have been rising faster than other prices for

thirty years or more.
02: Recently many of the nation's top colleges have agreed to increase their

financial aid.
03: But one group often has to pay the full price for college: foreign students.
04: This may help explain why colleges are making greater efforts to recruit them.
05: Large universities are likely to use their own representatives.
06: But smaller schools may work with independent recruiters.
07: An example is Albright College in Reading, Pennsylvania.
08: It has about one hundred foreign students, mostly from Asia.
09: It offers foreign students a savings of one-fifth off its published price if they

apply through Study Group Holdings.
10: This placement company operates the Web site go-study.com.
11: Albright's international student counselor, Nicole Christie, says the company is

paid from the money that the students pay the college.

CORPUS MATERIALS FOR CONSTRUCTING LEARNER CORPUS 89

12: Study Group looks for qualified students and rates their English skills before
they apply.

13: But foreign students themselves often pay recruiters.
14: The recruiters help them write applications, get recommendation letters and

prepare for admissions tests.
15: And they might help students prepare for getting a visa to study in the United

States.
16: Recruiters can also work for both students and colleges.
17: Some education officials call this a conflict of interest.
18: They wonder how recruiters can find a school that is truly right for a student

when certain colleges are paying them.
19: Officials also warn that like any other business, there is a risk of dishonesty.
20: Recruiters say they provide a useful service that is legal in the United States.
21: They say the colleges they work for are accredited and provide a good

education but may not be widely known.
22: Recruiting of foreign students has been the subject of recent stories in the

Chronicle of Higher Education and in the New York Times.
23: We are interested in hearing about experiences with college recruiters.
24: Send us your comments and we may use them in a future report.
25: Write to special@voanews.com and please include your name and country.

Appendix 2. Difficult Article in Speaking and Reading Tasks

01: The United States and the United Nations have listed Al-Qaida in the

Arabian Peninsula fugitive Fahd al-Quso as a Specially Designated
Terrorist.

02: These actions will help stem the flow of finances to and inhibit the travel
of this dangerous operative.

03: The designation of Fahd al-Quso highlights U.S. action against the threat
posed to the United States by al-Qaida in the Arabian Peninsula, said U.S.
Ambassador for Counterterrorism Daniel Benjamin.

04: The joint designation by the United States and the United Nations alerts
the public that Fahd al-Quso is actively engaged in terrorism.

05: These actions, said Ambassador Benjamin, "expose and isolate individuals
like al-Quso and result in denial of access to the global financial system.”

06: Prior to the formation of al-Qaida in the Arabian Peninsula, or AQAP, al-
Quso was associated with al-Qaida elements in Yemen and involved in the
2002 USS Cole bombing in the Port of Aden, which killed seventeen sailors.

07: He was jailed in Yemen in 2002 for his part in the attack.
08: Following al-Quso's release from prison in 2007, he joined al-Qaida in

Yemen.
09: In November 2009, al-Quso was added to the list of the FBI's most wanted

terrorists.
10: Al-Quso is connected to other designated AQAP senior leaders, including

Anwar al-Awlaqi, Nasir al-Wahishi, and Said Ali al-Shiri, and acts as a
cell leader in Yemen.

 K. KOTANI, T. YOSHIMI, H. NANJO, H. ISAHARA 90

11: In May 2010, al-Quso appeared in an al-Qaida in the Arabian Peninsula
video in which he threatened to attack the U.S. homeland, as well as U.S.
embassies and naval vessels abroad.

12: The terrorist designation blocks all al-Quso's property interests subject to
U.S. jurisdiction and prohibits U.S. citizens from engaging in transactions
that benefit al-Quso.

13: In addition to the U.S. domestic action, the United Nations Sanctions
Committee's listing will require all U.N member states to implement an
assets freeze, a travel ban, and an arms embargo against al-Quso.

14: The actions taken against the AQAP operative demonstrate international
resolve in eliminating its ability to execute violent attacks and to disrupt,
dismantle, and defeat their networks.

15: This designation represents just one phase of the U.S. government's
response to the threat posed by al-Qaida in the Arabian Peninsula.

Appendix 3. Comprehension Questions for Easy Article Shown in Appendix 1

1. Which of the following is mentioned?
 (a) College teams from around the world took part in a computer

programming competition.
 (b) Second of two reports on the business of bringing together students

and schools.
 (c) Wealthier countries agree to limit how aggressively they recruit from

developing countries.
 (d) Placement companies may be paid by colleges or students -- or both,

raising concerns about possible conflicts of interest.

2. Which of the following is mentioned?
 (a) Universities will make greater efforts to recruit foreign students.
 (b) Universities agreed to increase their financial aid for foreign students.
 (c) Universities operate the Web site go-study.com.

(d) Universities are interested in hearing about experiences with college
recruiters.

3. According to the passage, why do universities make efforts to recruit

foreign students?
 (a) Because college prices have been rising.
 (b) Because universities work with independent recruiters.
 (c) Because foreign students have to pay the full price for college.
 (d) Because universities look for qualified students.

4. Which of the following is NOT mentioned?
 (a) A college offers foreign students a savings of one-fifth off its

published price.
 (b) Recruiters help foreign students prepare for admissions tests.

CORPUS MATERIALS FOR CONSTRUCTING LEARNER CORPUS 91

 (c) Recruiters work for both students and colleges.
 (d) Large universities work with independent recruiters.

5. Which of the following is NOT mentioned?
 (a) Recruiters provide a useful service that is illegal in the United States.
 (b) Recruiters help foreign students prepare for getting a visa to study in

the United States.
 (c) Some colleges providing a good education may not be widely known.
 (d) You can send them your comments.

Appendix 4. Pictures for Description

Appendix 5. Sentences for Question Answering

1. What were your favorite subjects?
2. What were your least favorite subjects?
3. What were your TOEIC scores (most recent)?
4. When did you last attend a class or take a course of any sort?
5. What was the class?
6. Which languages do you speak and read, and how well?
7. What language did you learn?
8. How did you learn the language?
9. How long did you learn the language?

 K. KOTANI, T. YOSHIMI, H. NANJO, H. ISAHARA 92

10. Did you enjoy it?
11. Were you ever in contact with other languages while growing up? If yes,

please describe briefly.
12. Did you find learning foreign languages easy?
13. Is there anything that might interfere with your learning and using another

language?
14. Please add any additional comments about your past or anticipated

language learning experience that might be helpful.
15. A variety of techniques may be used to help you learn foreign languages, by

you and by your teachers. Please describe them.
16. How often is there a computer available for you to use at home?
17. How comfortable are you with using a computer?
18. How comfortable are you with using a computer to write a paper?
19. How many examinations/tests have you taken on a computer?
20. How often do you use a computer to send or receive e-mail?

KATSUNORI KOTANI
KANSAI GAIDAI UNIVERSITY,

16-1 NAKAMIYAHIGASHINO -CHO,
HIRAKATA , OSAKA, 573-1001, JAPAN

E-MAIL : <KKOTANI@KANSAIGAIDAI .AC.JP>

TAKEHIKO YOSHIMI
RYUKOKU UNIVERSITY,

1-5 YOKOYA SETA OE-CHO,
OTSU, SHIGA, 520-2194, JAPAN

HIROAKI NANJO

RYUKOKU UNIVERSITY,
1-5 YOKOYA SETA OE-CHO,

OTSU, SHIGA, 520-2194, JAPAN

HITOSHI ISAHARA
TOYOHASHI UNIVERSITY OF TECHNOLOGY,

1-1 HIBARIGAOKA , TEMPAKU,
1-2 TOYOHASHI, AICHI, 441-8580, JAPAN

IJCLA VOL. 3, NO. 2, JUL-DEC 2012, PP. 93–104
RECEIVED 04/11/11 ACCEPTED 09/12/11 FINAL 01/10/12

Using the ILCI Annotation Tool for POS
Annotation: A Case of Hindi

RITESH KUMAR, SHIV KAUSHIK, PINKEY NAINWANI,

ESHA BANERJEE, SUMEDH HADKE, GIRISH NATH JHA

Jawaharlal Nehru University, New Delhi

ABSTRACT

In the present paper, we present an annotation tool, ILCIANN
(Indian Languages Corpora Initiative Annotation Tool), which could
be potentially used for crowd-sourcing the annotation task and
creation of language resources for use in NLP. This tool is expected
to be especially helpful in creating annotated corpora for the less-
resourced languages. ILCIANN is a server-based web application
which could be used for any kind of word-level annotation task in any
language. In the paper a description of the architecture of the tool, its
functionality, its application in the ILCI (Indian Languages Corpora
Initiative) project for POS annotation of Hindi data and the extent to
which it increases the efficiency and accuracy of the annotators is
given. It describes the results of an experiment conducted to
understand the increase in the efficiency (in terms of time spent on
annotation) and the reliability (in terms of the inter-annotator
agreement) with the use of the tool when compared to the manual
annotation.

KEYWORDS: ILCIANN, ILCI, POS annotation, server-based
annotation, Hindi POS annotation

1 INTRODUCTION

ILCIANN is a server-based web application which could be used for
any kind of word-level annotation task in any language. It is developed
using Java/JSP as the programming language and is running on Apache

R. KUMAR, S. KAUSHIK, P. NAINWANI, E. BANERJEE, ET AL. 94

Tomcat 4.0 web server. It is meant to facilitate the job of manual
annotation (and not be a tagger in itself) by providing a user interface.
It also provides the facility of limited automatic tagging for closed
grammatical categories like pronouns, postpositions, conjunctions and
quantifiers which reduces the burden of human annotators.

Some other annotation tools have been developed for similar
purposes. Bird et al. [6] came up with a tool which targeted at
facilitating the development of linguistic annotations called Atlas
(Flexible and Extensible Architecture for Linguistic Annotations). It
consists of three levels:

1. The logical level: defines a set of procedures for creating,

modifying, searching, and storing well-formed annotation sets
2. The physical level: free to access in various ways- via networked

client server modes , or via linked libraries into application
binaries, or via scripting languages

3. The application level: reduces the burden of human annotators and
also language engineering application development.

Though the tool is comprehensive in nature but it works best for speech
database and corpus.

Kaplan et al. [7] designed a web based annotation tool (SLATE:
Segment and Link-based Annotation Tool Enhanced), which addresses
ten major annotation needs:

1. Managing the role of annotator and administrator,
2. Delegation and monitoring work,
3. Adaptability to new annotation tasks,
4. Adaptability within the current annotation task,
5. Diffing and merging (diffing and merging of data from multiple

annotators on a single resource to create a gold standard),
6. Versioning of corpora,
7. Extensibility in terms of layering,
8. Extensibility in terms of tools,
9. Extensibility in terms of importing/exporting and,
10. Support for multiple languages.

This tool to a great extent addresses to the purpose of the management
of large and parallel data but it does not address the issue of the
annotation of translated parallel corpora.

USING THE ILCI ANNOTATION TOOL FOR POS ANNOTATION 9 5

2. THE ILCIANN TOOL

The tool is being developed and currently used for POS annotation in
the Indian Languages Corpora Initiative (ILCI) project funded by the
Department of Information Technology (DIT), Govt. of India ([3, 4]).
The first phase of the project involved developing a POS annotated
parallel translated corpus of 50,000 sentences in 12 major Indian
languages (which included Hindi, Urdu, Bangla, Oriya, Punjabi,
Gujarati, Marathi, Konkani, Telugu, Tamil, Malayalam and English). It
is a consortium project running parallel in 10 different universities of
India spread across the country. The basic corpus was prepared in
Hindi, which was translated in 10 other languages to prepare the
parallel corpus. Once the corpus creation was complete, the data had to
be annotated with labels for part of speech (POS) using the BIS tagset
(a newly framed tagset, approved by Bureau of Indian Standards (BIS),
which is now the national standard and supposed to be used in all kinds
of POS annotation work across the nation).

In order to manage the whole process of annotation in such a way
that it could be done efficiently and with minimum errors, the ILCI
Annotation Tool (ILCIANN) is being used. The use of the tool ensured
that the data is saved in a centralized server in a uniform format which
could be later utilized for any NLP task without much need of pre-
processing or noise cleaning.

The following sections describe the architecture and working of the
tool.

2.1 Architecture of the Tool

2.1.1 Module 1 (Admin Module)

This is the module where all the administrative work related to any
annotation project is carried out. The following steps are carried out in
this module (and they are the most basic steps that need to be taken
before starting any annotation project and during the project also)

1. Step 1 (Creating the user login): This step involves creating the

login of users who would annotate the data. The project
administrator has the authority to create the login for the number of
specific human annotators who want to annotate/tag the data. It

R. KUMAR, S. KAUSHIK, P. NAINWANI, E. BANERJEE, ET AL. 96

ensures the safety as well as authenticity of the tagged data, while
theoretically giving an opportunity to a huge community to support
and help in building language resources for their language.
Moreover if the annotation project involves more than one
language then the user is also assigned the language on which (s)he
is supposed to work. For instance, if x is Hindi language annotator
in a multi-language project, (s)he can only work on Hindi data and
cannot do any modification (tagging the data, editing the data and
saving it) in other language files. Furthermore, each user is
assigned a set of maximum 3 files for annotation at one time (and a
new file is assigned only after one of the files is completed) to
ensure that multiple users do not work on same file (which also
helps in keeping a record of the progress of the individual
annotators) and also that one or more files are not left incomplete.

2. Step 2 (Uploading the Files): This step involves uploading
various files which would be used for the annotation and include
the data files which need to be tagged, the tagset which is to be
used and a file called the autotag file. The autotag file consists of a
list of words (which belong to closed grammatical category) and
their POS label. This file is used by the tool to tag the function
words automatically.

3. Step 3 (Monitoring the Progress): The admin could also monitor
the progress of each and every user in his/her project. The
information includes the number of files completed by each user,
the name of the files assigned to each user, the files on which each
user is currently working, etc.

4. Step 4 (Downloading the Files): The file is ready for download
only when each sentence of the file is tagged. Downloading the
completed file is optional and only the administrator of the project
has the right to download these files.

2.1.2 Module 2 (Annotation Module)

1. Step 1 (Selection): After the user logged in, the left hand side of

the page shows two options: select the file and sentence id. The
user is required to select the file in which (s)he wants to work.
Once the file gets selected, the untagged sentence immediately
appears. . Further, if the user wants to do some modifications in
previously tagged sentences, (s)he can do it with the option of
“select a sentence id”. The right hand side of the page shows the

USING THE ILCI ANNOTATION TOOL FOR POS ANNOTATION 9 7

progress of tagging status i.e. number of completed tagged
sentences and also completed files.

2. Step 2 (Editing/Segmentation): This step is optional. The user
uses this button only when there is some error in the original data
which needs to be corrected.

3. Step 3 (Annotation): This is the major step in the tool. As “tag the
sentence” button is clicked, each word of the sentence with the
default tag (the first tag in the tagset) appears except for the words
which are automatically tagged. As mentioned above, to minimize
the human efforts, the ILCIANN tool automatically tags closed
categories like pronouns, postpositions, quantifiers, symbols and
punctuations. These automatically tagged words are not frozen, as
we know that part-of-speech is purely contextual, therefore, one
may want to do further modifications on automatically tagged
words also if (s)he finds it inappropriate according to the context,
(s)he has the option to do so. Words which are not tagged, the user
selects the appropriate tag from the given tagset list.

4. Step 4 (Saving): After assigning the appropriate tag to each word,
there is the button of “save” which saves the tagged sentence. The
whole file cannot be saved in one go, each and every sentence
needs to be saved individually. The saved tagged sentence is stored
on the server in the format of “sentence id” and respective “tagged
sentence”.

2.1.3. Module 3 (Statistics Module)

1. Information 1 (File Information): This includes information

regarding the number of files completed and the number of files on
which work is in process.

2. Information 2 (Sentence Information): The information
regarding the number of sentences completed in the present file
and in the whole corpus, and also the speed of annotation of each
user (in terms of sentences per minute) is included here.

2.2 Using the Tool: POS Annotation in ILCI

There are three levels of users of this tool:

1. Administrator (Admin) : For the purpose of management, each

language is assigned an administrator user account or the Admin

R. KUMAR, S. KAUSHIK, P. NAINWANI, E. BANERJEE, ET AL. 98

account. The Admin has a username and password, which he or
she uses to access his/her account. It is in the Admin’s jurisdiction
to assign annotation work to as many Users as is required, the
language in which annotation work will be carried out as well as
up to 3 sets within each language group. The tasks of the Admin
include maintaining the log of user details, tagging status and
downloading completed files.

2. User: The User is assigned a username, password and language.
The User, on entering this information in the Login page is
directed to the main Home page of the tool, wherein the sets that
he or she is assigned are displayed. The User selects the set
number and the sentence ID which (s)he wants to work on. In case
there is a need for correction within the displayed sentence, the
User uses the Segment button to insert or delete additional
information, such as white space removal, hyphen insertion etc.
Once the sentence is ready for tagging, the User clicks on Tag the
Sentence button. On clicking the button, each word of the sentence
is displayed separately with the tagset in a drop-down box format
beside each word. The User selects the appropriate tag for each
word and tags the sentence. On completion, the sentences, along
with the tags, are saved with the help of Save button. On
completion of work, the User logs out using the Logout button.

3. Master Admin: The Master Admin also has a Username and
password, which he or she uses to access his/her account. In
addition to the normal tasks of the Admin, the Master Admin can
also maintain the time log of the user accounts and create, delete,
or change passwords of user accounts.

3 EFFICIENCY AND RELIABILITY OF THE TOOL

In order to understand the efficiency and reliability of the tool, an
experiment was conducted with the help of three annotators. Each
annotator was given two sets of data, each containing around 500
words (a total of 45 sentences). These sentences were taken from the
ILCI corpora and contained almost equal number of words from both
the health and tourism domain. The annotators were required to
annotate the words manually (in a text file, without using any kind of
tool), using the tool without intelligence and using the tool with
intelligence. While the first set of 500 words were same across all these
methods of annotation, the second set of 500 words were different

USING THE ILCI ANNOTATION TOOL FOR POS ANNOTATION 9 9

across all these methods. As is common practice in such experiments,
the annotators were not allowed to consult each other during the
annotation period. The experiments were conducted over a period of 6
days, with a gap of one day in between the annotation by each method
(to reduce the bias in the common set). The time taken by each
annotator in annotating each set by each method was noted down. Also
the tagged data is being used to calculate the inter-annotator agreement
in order to see if the tool also increases the reliability of the annotation
process.

3.1 Calculating the Efficiency

Table 1 gives the time taken by each annotator in annotating each set
by each method.

Table 1. Comparison of time taken in annotation (in minutes)

 Manual Not intelligent Intelligent
Sets A B A B A B
Annotator A 55 50 30 35 15 15
Annotator B 32 36 22 25 18 17
Annotator C 125 97 29 33 24 16

As we could clearly see the tool (without any intelligence) has led to
almost 100% increase in the efficiency of annotator A (for set A).
While for others also there is an increase of around 50% in the
efficiency of annotator A and B. While for annotator C, we see that the
speed (which was very slow when the annotation was carried out
manually) has increased tremendously and has come at par with the
other two annotators. Moreover when we impart some intelligence to
the system, we again see an increase of almost 50% in the efficiency of
annotator A; while there is a marked increase in the speed of other
annotators also. This efficiency could be further increased by imparting
more intelligence to the machine. It must be noted that the intelligence,
at present, is given to the machine by way of an autotag file which
consists of a list of word with the tag that should be given to it. This
file is prepared manually and contains those words which always takes
only one tag irrespective of the context (mainly function words; but it
also has some content words). At a later stage the tool will be equipped

R. KUMAR, S. KAUSHIK, P. NAINWANI, E. BANERJEE, ET AL. 100

with machine learning algorithms so that it becomes a POS tagger in
effect and it could auto-tag most of the words and the user's effort
remains only in revising the annotated data.

3.2 Calculating the Reliability

Several methods (discussed in detail) are used to compute the reliability
(or, inter-annotator agreement) of any annotation work. Some of the
major ones include the following.

Percentage Agreement (also called observed agreement, defined by
Scott, 1955) is one of the simplest and earliest measures of inter-
annotator agreement where the percentage of agreements between two
annotators is calculated.

Cohen’s kappa coefficient [1] is one of the best-known statistical
measures of inter-rater agreement or inter-annotator agreement (IAA)
for qualitative items. It is generally thought to be a more robust
measure than simple percent agreement calculation since K takes into
account the agreement occurring by chance. Cohen’s kappa measures
the agreement between two raters and each classifies N items into C
mutually exclusive categories. The equation for K is

)Pr(1

)Pr()Pr(

e

ea

−
−=κ ,

where Pr(a) is the relative observed agreement among raters, and Pr(e)
is the hypothetical probability of chance agreement, using the observed
data to calculate the probabilities of each observer randomly saying
each category. If the raters are in complete agreement then K = 1. If
there is no agreement among the raters other than what would be
expected by chance, K = 0.

Scott's pi [5] is a statistic for measuring inter-rater reliability for
nominal data. Scott's pi is similar to Cohen’s kappa in that they
improve on simple observed agreement by factoring in the extent of
agreement that might be expected by chance. On the other hand Scott's
pi makes the assumption that annotators have the same distribution of
responses, which makes Cohen’s kappa slightly more informative. The
equation for Scott's pi, as in Cohen’s kappa is:

)Pr(1

)Pr()Pr(

e

ea

−
−=κ ;

USING THE ILCI ANNOTATION TOOL FOR POS ANNOTATION 1 01

however, Pr(e) is calculated using joint proportions.
Fleiss' Kappa [2] is a generalization of Scott's pi statistic. It is a

statistical measure for assessing the reliability of agreement between a
fixed number of raters when assigning categorical ratings to a number
of items or classifying items. It works for any number of raters giving
categorical ratings to a fixed number of items unlike Cohen's kappa and
Scott's pi. It can be interpreted as expressing the extent to which the
observed amount of agreement among raters exceeds what would be
expected if all raters made their ratings completely randomly. Fleiss'
kappa specifically assumes although there are a fixed number of raters
(e.g., three), different items are rated by different individuals (Fleiss,
1971, p.378). If a fixed number of people assign numerical ratings to a
number of items then the kappa will give a measure for how consistent
the ratings are. The kappa, K, can be defined as:

e

e

P

PP

−
−

=
1

κ .

The factor gives the degree of agreement that is attainable above
chance, and ePP − gives the degree of agreement actually achieved

above chance. If the raters are in complete agreement then K = 1. If
there is no agreement among the raters then K = 0.

For the present purposes, Cohen's Kappa and Scott's Pi are not very
relevant since the experiment involved more than two annotators.
However we have calculated both the percentage and the Fleiss' Kappa
so that the agreement measure of both kinds (taking chance into
account and without taking chance into account) is calculated.

3.3 Calculating Percentage Agreement

The simple percentage of agreements among the three pairs of
annotators is summarised in Table 2. It is calculated using the simple
formula of percentage: sum of agreed instances × 100 / total number of
instances.

While the inter-annotator agreement between annotators A and B is
already on the higher side of the spectrum, it does not improve much
with the use of the tool and it seems that the other factors (like the
tagset itself, the guidelines, annotators' expertise, etc.) are playing a
vital role here. However the situation is quite different in case of

R. KUMAR, S. KAUSHIK, P. NAINWANI, E. BANERJEE, ET AL. 102

agreement between annotators B and C and that between A and C
where the inter-annotator agreement in case of manual annotation is
pretty low. The agreement between the annotators improves quite
considerably with the use of the tool. The intelligence of the tool also
seems to be playing some role in the improvement of the inter-
annotator agreement.

Table 2. Percentage of agreement among three pairs of annotators (%)

 Manual Not intelligent Intelligent
Sets A B A B A B
Annotators A and B 85 87 84 83 90 87
Annotators B and C 66 77 81 81 83 85
Annotators A and C 67 72 76 81 81 80

3.4 Calculating Fleiss’ Kappa

As mentioned earlier Fleiss' Kappa is a generalization over Scott's pi to
calculate the inter-annotator agreement among more than 2 annotators.
Since the present experiment involved three annotators, Fleiss' Kappa
was also calculated (which is generally considered more reliable and
accurate than percentage calculation). In order to arrive at a better
picture vis-a-vis the percentage agreement as well as see if the overall
agreement is affected by one annotator, both the inter-annotator
agreement in between each pair of annotators as well as the overall
agreement is also estimated. The values of Fleiss' Kappa for each pair
of annotator in each set and also the general values for all the sets taken
together is summarised in Table 3.

These values of Fleiss' reaffirm the facts that were shown by the
percentage calculation of the agreements. The tool seems to be making
only a small contribution to an increase in the reliability of the
annotation at the present stage. However when we look at the overall
result, we see a steady increase in the reliability (or, inter-annotator
agreement) of the annotation efforts as we move from manual
annotation to annotation using the tool to annotation using the tool with
some limited intelligence.

USING THE ILCI ANNOTATION TOOL FOR POS ANNOTATION 1 03

Table 3. Calculated values of Fleiss' Kappa

Annotators Manual Not intelligent Intelligent
Sets: A B A B A B
A and B 0.852 0.871 0.829 0.820 0.895 0.881
B and C 0.698 0.786 0.794 0.796 0.814 0.867
A and C 0.719 0.732 0.731 0.803 0.789 0.819
A, B and C 0.757 0.797 0.785 0.806 0.833 0.856
A, B and C 0.777 0.797 0.845

4 CONCLUSIONS

In the present paper, we have described the working of an online
annotation tool, ILCIANN, which is meant not only to facilitate the
task of manually annotating the data but also increase the overall
efficiency (by considerably reducing the time taken in the annotation
work) and the reliability (by increasing the inter-annotator agreement)
of the annotation task. The experiments conducted to know the exact
nature of efficiency and reliability has clearly shown that both of these
attributes increase as the intelligence of the tool increases. Since the
tool is developed in such a way that it could become more intelligent as
more annotation takes place, the tool is expected to work in a much
better way as the time passes and it could prove to be a very useful
resource for the development of language resources for all kinds of
language, especially the less-resourced ones.

REFERENCES

1. Cohen, J.: A coefficient of agreement for nominal scales. Educational and

Psychological Measurement. 20(1), 37–46 (1960)
2. Fleiss, J. L.: Measuring nominal scale agreement among many raters.

Psychological Bulletin. 76(5), 378–382 (1971)
3. Jha, G. N.: Indian Language Corpora Initiative (ILCI). Invited talk, 4th

Intern. Language and Technology Conf. (4th LTC), Poland (2009).
4. Jha, G. N.: The TDIL program and the Indian Language Corpora Initiative

(ILCI). In: Proceedings of the Seventh International conference on
Language Resources and Evaluation (LREC'10), pp. 982-985 (2010)

5. Scott, W.: Reliability of content analysis: The case of nominal scale
coding. Public Opinion Quarterly. 19(3), 321–325 (1955)

6. Bird, S., David D., Garofolo, J. S., Henderson, J., Laprun, C., Liberman,
M.: Atlas: A flexible and extensible architecture for linguistic annotation.
CoRR, cs.CL/0007022 (2000)

R. KUMAR, S. KAUSHIK, P. NAINWANI, E. BANERJEE, ET AL. 104

7. Kaplan, D., Iida, R., Tok, T.: Annotation Process Management Revisited.
In: Proceedings of the Seventh conference on International Language
Resources and Evaluation (LREC'10), pp. 3654-3661 (2010)

RITESH KUMAR
CENTRE FOR L INGUISTICS,

JAWAHARLAL NEHRU UNIVERSITY,
NEW DELHI, INDIA .

E-MAIL : <RITESH78_LLH@JNU.AC.IN>

SHIV KAUSHIK
SPECIAL CENTRE FOR SANSKRIT STUDIES,

JAWAHARLAL NEHRU UNIVERSITY,
NEW DELHI, INDIA

E-MAIL : <SHIVKAUSHIK.ENGG@GMAIL .COM>

PINKEY NAINWANI
CENTRE FOR L INGUISTICS,

JAWAHARLAL NEHRU UNIVERSITY,
NEW DELHI, INDIA

E-MAIL : <PINKEYBHU39@GMAIL .COM>

ESHA BANERJEE
CENTRE FOR L INGUISTICS,

JAWAHARLAL NEHRU UNIVERSITY,
NEW DELHI, INDIA

E-MAIL : <ESHA.JNU@GMAIL .COM>

SUMEDH HADKE
CENTRE FOR INDIAN LANGUAGES,

JAWAHARLAL NEHRU UNIVERSITY,
NEW DELHI, INDIA

E-MAIL : <SUMEDHKHADKE@GMAIL .COM>

GIRISH NATH JHA
SPECIAL CENTRE FOR SANSKRIT STUDIES,

JAWAHARLAL NEHRU UNIVERSITY,
NEW DELHI, INDIA

E-MAIL : <GIRISHJHA@GMAIL .COM>

Parsing and Co-reference

IJCLA VOL. 3, NO. 2, JUL-DEC 2012, PP. 107–122
RECEIVED 31/10/11 ACCEPTED 09/12/11 FINAL 21/12/12

POS Taggers and Dependency Parsing

RAMADAN ALFARED AND DENIS BÉCHET

University of Nantes, France

ABSTRACT

A wide-coverage parser copes with the problem of the explosion
of the number of combinations of sub-trees and the number of
theoretically possible dependency trees, which in the majority
give spurious analyses. We show that, by using a POS tagger
for choosing the most probable grammatical classes of the lexical
units, we can substantially improve the rate of spurious ambiguity
in a categorial dependency grammar of French developed by the
NLP team of LINA. The experimental results show that our mod-
els perform better than the model which do not use a POS tagger
at the cost of losing some correct analyses especially when the
model of the tagger is very different to the lexical model of the
parser.

1 INTRODUCTION

In the last years, dependency parsing becomes very popular and has been
a topic of active research in natural language processing. Many different
algorithms were suggested and evaluated for this task. They achieve both,
a reasonable time complexity and a high accuracy. Statistical parsers with
high accuracy are generally trained on texts annotated with morpholog-
ical and sometimes also some other features. In particular, the minimal
necessary annotation is POS tags. In this paper, we show how the use of
POS tags may improve the rate of spurious ambiguity of parsing with a
wide scope categorial dependency grammar of French (CDG) which uses
Lefff as its lexical base. In CDG, all lexical units (LU) are grouped into
lexical classes (CDG classes). All units of a class share the same syntac-
tic types. Lefff is a wide coverage lexicon of French representing a very

108 RAMADAN ALFARED AND DENIS BÉCHET

large set of highly structured lexical information. Previously, a correspon-
dence between CDG classes and Lefff classification was established and
presented in [1].

The rest of the paper is structured as follows. Section 2 describes
dependency grammars, Section 3 describes the parsing problem and our
models. Section 4 presents the experimental evaluation, and Section 5
contains a comparative error analysis of the our different models. Finally,
Section 6 concludes the paper.

2 DEPENDENCY GRAMMARS

Dependency-based representations have become increasingly popular in
syntactic parsing, especially for languages that exhibit free or flexible
word order, such as Czech (Collins et al., 1999), Bulgarian (Marinov
Nivre, 2005), Turkish (Eryigit Oflazer, 2006), Russian (Boguslavsky et
al., 2011). Many practical implementations of dependency parsing are
restricted to projective structures, where the projection of a head word
has to form a continuous substring of the sentence.

Dependency Grammars (DGs) are formal grammars assigning depen-
dency trees (DT) to a sentence. A DT is a tree with words as nodes and
dependencies, i.e. named syntactic binary relations between words, as ar-
rows. In other words, if two words v1 and v2 are related by dependency

d (denoted
d

v1 → v2) then v1 is the governor and v2 is the subordinate.
Figure 1 illustrates the dependencies in the sentence “Au commencement
était le Verbe.”

Fig. 1. French: in the beginning was the Word.

The relation
pred

était −→ V erbe represents the predicative dependency
between the copula était and the subject Verbe. The head of this sentence
is était.

POS TAGGERS AND DEPENDENCY PARSING 109

2.1 Categorials Dependency Grammars

Categorial Dependency Grammars introduced by [2] are lexicalized in
the same sense as the conventional categorial grammars. Here we briefly
give basic information on CDG.

The CDG types are defined over a set C of elementary categories
(types). A syntactic type may be repetitive or optional C∗ =df {X∗|X ∈
C}, C? =df {X?|X ∈ C}. CDG use iteration to express all kinds of
repetitive dependencies such as modifiers and coordination relations.

The non-projective dependencies are expressed using polarized va-
lencies. Namely, the governor G which has a right distant subordinate
D through a discontinuous dependency d has positive dependency↗ d,
whereas its subordinate D has the negative valency↘ d. Together these
dual valencies define the discontinuous dependency d.

In CDG, the anchor types of the form #(↘ d), #(↙ d) are used
in the same way as local dependencies. More precisely, CDG define dis-
continuous dependencies using polarized valencies (left / right, positive /
negative) and a simple valencies pairing principle First Available (FA).
For every valency, the corresponding one is the closest dual valency in
the indicated direction.

In order to define polarized categories, we distinguish between four
dependency polarities: left and right positive↖,↗ and left and right neg-
ative↘,↙. For each polarity v ∈ {↖,↘,↗,↙} there is a unique dual
polarity v̆ : ↖̆ =↙, ↙̆ =↖, ↗̆ =↘, ↘̆ =↗. ↗ C,↖ C,↘ C and
↙ C denote the corresponding sets of polarized distant dependency cat-
egories.

The general form of a CDG type is [l1 \ l2 \ · · · \H/ · · · /r2/r1]
P

where the head type H defines the incoming dependency on the word, l1
and r1 are elementary (iterated or optional) categories which correspond
to left or right outgoing dependencies or anchors, P is a potential, a string
of polarized valencies which defines the long distance dependencies (in-
coming or outgoing), see [3], [4] and [5] for more details. Figure 2 shows
two discontinuous dependencies (non-projective) in the sentence “elle la
lui a donnée.”.

Categorial dependency grammars which define this dependency tree
affect the types which anchor the clitics la, lui on the auxiliary a. The
discontinuous dependencies are represented by dotted arrows.

110 RAMADAN ALFARED AND DENIS BÉCHET

Fig. 2. Non-projective DS: “*she it[fem.] to him has given.”.

ellePN(Lex=pers,C=n) 7→ [pred]

laPN(Lex=pn,F=clit,C=a) 7→ [#(↙ clit−a− obj)]↙clit−a−obj

luiPN(Lex=pn,F=clit,P=3,C=d) 7→ [#(↙ clit−3d− obj)]↙clit−3d−obj

aV aux(Lex=avoir,F=fin) 7→ [#(↙ clit−3d−obj)
\#(↙ clit−a−obj)
\pred\S/@fs/aux−a−d]

donnéeV 2t(F=pz,C1=a,C2=d|g|l,T=past)

7→ [aux−a−d]
↖clit−3d−obj↖clit−a−obj

.FullStop(Lex=”.”) 7→ [@fs]

The word elle is classified as a pronoun (PN), where pers and n cor-
respond to person and noun. The word la is classified as a clitic at ac-
cusative case. The word lui is classified as a clitic for 3rd person with
complement at dative case. The word a is classified as an auxiliary verb
with a finite form ”F=fin” while the word donnée is classified as a di-
transitive verb where pz is ”past participle” form and has two arguments
(complement), the first complement is a direct complement (at accusative)
and the second complement is a dative, a genitive or a locative.

The NLP team has developed a large scale CDG of French and a
general purpose offline CDG parser. In this French CDG, the types are
assigned to CDG classes (see [6] for details). The CDG parser is currently
used to develop dependency tree corpora. The linguist’s interface of this
parser lets manually select for every LU one of its possible classes and
one of the possible head dependencies. Then the parser finds all analyses
compatible with the selection. Our goal in this paper is to automatically
pre-fetch the most probable CDG classes per LU depending on its POS
and to measure the impact of this selection on the ambiguity of the parser
as applied to the CDG of French.

POS TAGGERS AND DEPENDENCY PARSING 111

3 POS-BASED PARSING MODELS

Usually, the task of disambiguation of a dependency parser consists in
deriving a single correct dependency tree τ for a given sentence S. The
parsing problem consist in finding the mapping of an input sentence S,
constituted of words w1 · · ·wn, to its dependency tree τ . More precisely,
given a parsing model M and a sentence S, we derive the optimal depen-
dency tree τ for S according toM . So the parsing problem is to construct
the optimal dependencies for the input sentence, given the parsing model.
Some parsers solve this problem by deriving a single analysis for each
sentence. Our task is different: we should instead lower the ambiguity of
the French CDG using POS tagging models and we evaluate the effect
obtained by our method. Our POS-based parsing models first choose the
most probable CDG classes through POS tags for the words in a sentence.
Applying our method we should resolve a technical problem which arises
from the nature of the lexical database of the CDG of French. In fact, this
lexical database uses the (freely available) wide-coverage French lexi-
con Lefff [7]. It contains 110,477 lemmas (simple and compounds) and
536,375 inflected forms. The main part of the French CDG classes linked
with Lefff is saved in a PostgreSQL Database. In this database, each LU
of Lefff corresponds to one or several CDG classes. This correspondence
is realized in the main table lexicon. Unfortunately, Lefff is not com-
plete and contains errors. Therefore, in the lexical database there are sev-
eral facilities for correction and complementation of Lefff definitions.

Before we describe our approach, we should explain that the CDG
parser uses the following two strategies for lexicon (called below mod-
els):

Base model gives access to the forms contained in the classes of the
French CDG (about 1500 forms), and also gives access to the original
definitions of Lefff related with the CDG classes in the database.

The three other models use Lefff and the French CDG implicitly.
First, a tagger is applied to the input sentence (Tree-Tagger [8] in T.T
Model, MElt-Tagger [9] in M.T model and Brill tagger [10] in B.T model),
Figure 4 presents this strategy.

Then, depending on the computed (composite in general) LU and
their POS, a compatible lexical definition for every pair (LU, POS) and
the corresponding CDG class is found in the database. If and when they
exist, they are integrated to the input file that is sent to the parser.

Correspondence between POS tagging and Lefff: The correspondence
between CDG classes and Lefff is established using the workspace dis-

112 RAMADAN ALFARED AND DENIS BÉCHET

Fig. 3. General form of Base model.

tiller shown in Figure 4. We try to find the correspondence between the
tags of POS-tagger and the syntactic categories of Lefff. This correspon-
dence is approximate, because the lexical models of POS-tagger and of
Lefff and the french CDG are different. Table 1 shows some examples of
the correspondence.

Table 1. Examples of correspondence between POS-tagger and Lefff.

Lefff T.T M.T B.T
np (noun phrases) NAM NPP NAM, SBP
coo (coordination) KON CC, ET COO
det (determiner) DET:ART DET DTN
nc (commun nous) NOM, NUM NC SBC, CAR

Some important information on POS-tagging e.g. VER:futu are
very useful to determine both the mood and the tense of a verb. In this
case, we also compare them to the mood and tense of the lexicon database.
For instance, VER:futu means that mood is indicative and tense is fu-
ture.

The WS distillers of the different models take an input file which
contains the sentences with it POS (annotated sentence), and the output
is a file with (lexical entries) annotated CDG classes and word features.

POS TAGGERS AND DEPENDENCY PARSING 113

Fig. 4. General form of POS-bassed parsing models.

The algorithm chooses the most probable CDG classes for a LU by using
POS tags and cat of Lefff.

This algorithm consists of the next three steps.

– First we search by the word of the sentence and its POS tag and
compare them between the correspondence to form and it category
that are found in the database, if it’s equal, then we take it CDG class
and it morphological features such as mood, tense, person, gender,
number, lemma and saved all these information on file (lexical entry).

– If there is no result from the first step then we only search by the
word of the sentence and compared it with form and take all the mor-
phological information that correspond to this form.

– If also there is no result we classified this LU as "UT(Lex=V|N|
Adj|Adv)". This CDG class is assigned to unknown LU.

4 EXPERIMENTAL RESULTS

In our experiments we use a corpus of sentences divided into two sub-
sets. The first subset, serving as a test set, consists of 1443 French sen-
tences that have been analyzed to build the French Gold Standard de-
pendency corpus (DTB): a corpus with French sentences from various
sources. These sentences have 14974 projective and non projective (dis-
continuous) dependencies.

The second subset of the corpus has 184 French sentences from the
French treebank [11].

114 RAMADAN ALFARED AND DENIS BÉCHET

For the experiment with the first subset, we first run the parser with
the maximum number of viewed dependency trees set to 2000. We can
not request all the possible dependency trees per sentence. With the French
CDG, it generates hundreds of spurious structures per sentence. So for
long and complex sentences, it is practically impossible to know how
many DS are produced. Till the final step where the DS are extracted
from the chart, the parsing algorithm is polynomial. Given that the num-
ber of these DS may be exponential with respect to the size of the chart,
the final step is exponential in space in the worst case. In this step, the
DS are generated from the chart in a certain order. The parser generates
a HTML report page, which includes various useful statistics. It can also
produce an XML structure representation of every DS including all nec-
essary information.

For our POS-based parsing models, we compute the ambiguity reduc-

tion of dependency trees using the formula Xj =

N∑
i=1

Aj
i where Aj

i is the

number of dependency trees that are found for model j, where j is Base
model, T.T model, M.T model or B.T model and i=1,...,N . N represents
the number of the sentences that have a 100% correct analysis in every
model. For our experiments, N=325. The reduction of dependency trees
of model j is XBase−Xj

XBase ×100, where j is different from the Base model.
2

Table 2. Experimental results (dependency structures) compared to four models

Base T.T M.T B.T
DS for 325 sentences 153938 42572 44056 46718
Reduction # DS % wrt model j 72.34% 71.38% 69.65%
geometric mean - 0,24 0,23 0,26
DSj /# DSBase

We do not compute the number of dependency trees of the sentences
that have more or eqaul 2000 analyses and also we just take into account
the sentences that have at least one analysis for each parsing model. Ta-
ble 3 shows some cases (accepted or canceled cases).

For the second experiment with the first subset, we run the parser with
the maximum number of viewed dependency trees set to 1 in order to
obtain the maximal number of analyzed sentences, and also to know how
many sentences have all dependencies correctly analyzed. We compute

POS TAGGERS AND DEPENDENCY PARSING 115

Table 3. Cas canceled or accepted for the # DS.

Cas canceled or accepted Base T.T M.T B.T
× (because 0 analysis) 55 34 55 0
× (because >=2000 analyse) >=2000 666 1000 867
× (because no analyse) 11 9 no analyse 8√

(accepted) 67 13 16 33

the total number of composition trees 1 using the formula Y j =

M∑
i=1

Bj
i ,

where Bj
i is the number of composition trees for sentences that are found

using model j, where j is Base model, T.T model, M.T model or B.T
model and i=1,...,M . M represents the number of sentences that have
at least one analysis in every model. For our experiments M=780. The
reduction of the composition trees for model j is Y Base−Y j

Y Base ×100, where
j is different from Base model.

Table 4. Experimental results (composition trees) compared to four parsing mod-
els

Base T.T M.T B.T
CT for 780 sentences 16330× 108 27× 108 34× 108 28× 108

Reduction de # CT % wrt model j 99.83% 99.79% 99.82%
geometric mean - 0,035 0,037 0,033
CTj /# CTBase

The results in Tables 4 and 2 show that the numbers of composi-
tion trees and dependency trees of the three POS-based parsing models
are inferior that of Base model. Our models achieve high reduction of
both, composition trees and dependency trees (over 99% and 70% re-
spectively).

The evaluation of the parser uses classical measures. It uses the la-
beled attachment score ASL for the mode on Figure 4, which is the

1 For each dependency tree, there are several composition trees because each
composition tree specifies also a set of word features, a class and a type. We use
the number of composition trees rather than the number of dependency trees,
because it’s usually not possible to evaluate the total number of dependency
trees.

116 RAMADAN ALFARED AND DENIS BÉCHET

proportion of tokens that are assigned the correct head and the correct
dependency label. The labeled attachment score represents the percent-
age of tokens that have been assigned both the correct head and the cor-
rect dependency label. There are several sentences which have accuracy
over 90% of correct dependencies, but we count only the sentences that
have 100% correct analysis. The result in Table 5 shows that our models
achieve between 88% and 95% accuracy for correct dependency relation
labeling.

Table 5. Experimental results of parsing accuracy compared to four parsing mod-
els.

Base T.T M.T B.T
Sentences that have at 1089 1125 1005 949
least one analysis (1)
Sentences have 100% 1089 874 892 667
correct dependencies
Recall 75.46% 60.65% 61.81% 46.22%
Precision 100% 77.68% 88.75% 70.28%
of dependencies (from (1)) 8255 9571 7730 7603
correct dependencies 8255 8465 7380 6838
Recall correct dependencies 55.12% 56.53% 49.28% 45.66%
Precision 100% 88.44% 95.47% 89.93%
Labeled accuracy average 100% 82.27% 85% 69%
(on all 1443 sentences)

We do not need to use unlabeled attachment score ASU , because we
don’t compare the result of several parsers, ASU is used by [12], that
compare between two parsing architectures for the high accuracy on un-
known words. Indeed BKY+FLABELER [13] achieves only a 82.56% tag-
ging accuracy for the unknown words in the development set (5.96% of
the tokens), whereas MElt+MST [14] achieves 90.01%.

Comparing between the three POS-based parsing models, we note
that M.T model performs better than T.T and B.T models in terms of
parsing accuracy. But T.T model is better than the other models in terms
of ambiguity reduction and parsing time.

Table 6 shows an example to explain the reduction for both depen-
dency trees and composition trees of the four parsing models in the sen-
tence : “il parle en courtes phrases”.

POS TAGGERS AND DEPENDENCY PARSING 117

Table 6. Reduction (dependency trees and composition trees) on the sentence “he
speaks in short sentences”.

Base T.T M.T B.T
Reduction (# DS) 268 54 211 54
Reduction (# CT) 28732 3336 8559 3336

Fig. 5. “he speaks in short sentences”

il 7−→ PN(Lex = pers, C = n)

parle 7−→ V t(F = fin,C = g)

en 7−→ PP (F = compl − obl, C = o)

courtes 7−→ Adj(F = modifier)

phrases 7−→ N(Lex = common)

Table 7 shows comparative parsing times for each parsing model.

Table 7. Comparation of the parsing times (four parsing models for 1443 sen-
tences)

Base T.T M.T B.T
Sentences that have at 1089 1125 1005 949
least one analysis
Sentences that are 0 141 127 314
analysed incorrect
Analyzed sentences total 1089 1266 1132 1263
Parsing time 03h 37mn 01h 32mn 02h 31mn 02h 8mn
Sentences that 354 177 311 180
are not analyzed
Parsing time 05h 09mn 03h 35mn 05h 18mn 03h 00mn
Parsing time total 8h 46m 5h 07m 7h 49m 5h 08m

118 RAMADAN ALFARED AND DENIS BÉCHET

Table 8. Effect of class pre-fetching (Paris 7 corpus).

Base T.T
#CT 1097325498316350 7048627222816
#CT 10973254× 108 70486× 108

Total reduction #CT % wrt Base model 99,9%
geometric mean of - 0.002
CTT.T /# CTBase

CT of the sentence Figure 6 17284 241
DT of the sentence Figure 6 1295 68

For the second subset of 184 French sentences, we use only the Base
model and T.T model. We only compute the number of composition trees
using the same formula of the first subset. The results show that pre-
fetching of CDG classes reduces the ambiguity with respect to composi-
tion trees more than 99%.

Table 8 summarizes the experimental results for Base model and T.T
model for the number of composition trees.

The results given in Table 8 show that pre-fetching of classes reduces
the ambiguity in terms of composition trees more than 99%.

Fig. 6. Paris 7 : the second problem is the food.

5 DISCUSSION

This discussion provides a brief analysis of the errors made by the POS
tagger for the first corpus, when we investigate the POS category of erro-
neous instances.

Each tagger tags this sentences by differnt way such as on the ta-
ble 10.

In the CDG grammar, these tokens have different grammatical classes.
As a result it gives different lexical classes for each token. Table 11 illus-
trates the lexical classes that correspond to the sentence “Ève, vas-t’en
!”.

POS TAGGERS AND DEPENDENCY PARSING 119

Table 9. Errors make by the Parser for the parsing models.

memory bad too complex
exhansted sentences sentences

Base 12 0 342
T.T 17 141 160
M.T 1 127 310
B.T 0 314 180

Fig. 7. Structure de dépendances : Ève, vas-t’en !

Table 10. T́agset of differnt tagger

Tree Tagger MElt Tagger Bril Tagger
vas-t’en/NOM vas-t’en/ADV vas-t/VCJ

en/PREP

Table 11. Classes assigned to the lexical unity

Frenche CDG
lexical unity Class
Éve N(Lex=proper)
, Comma(Lex=’$CM’)
vas Vt(F=fin,C=l), Vt(F=fin,C=d), Vt(F=fin,C=a)
t’ PN(Lex=pn,F=refl)
en PN(Lex=pn,F=clit,C=g—p), PN(Lex=attach-npers,C=g—p)
! EmphatMark(Lex=’!’)

In the T.T model, there are 318 sentences that have no dependency
tree, 177 sentences among them are not analyzed (time exceeded), which
means there was not enough time to parse them, (the maximum num-
ber of seconds per sentence is set to 60 second), as we indicated above
for ambiguous CDG. There are 141 sentences that are analysed as incor-
rect sentences. A first reason for this fact is that, there is at least one of

120 RAMADAN ALFARED AND DENIS BÉCHET

the next compound words in the sentences : à peu près, Hé bien, dès
lors, de loin, au dessous, la-bas, des EU, de l’. In these cases, Tree-
Tagger tags these compound words as separate words: à as prep, peu
as adv, près as adv, etc. But the database has only complete entries for
them. The second main reason is that Tree tagger makes errors in tag-
ging for some LU. Thus the distiller do not find a good CDG class for
these LU. We have seen that the results of B.T model are worse than
those for T.T and M.T models, because Brill-Tagger also makes many
errors in tagging. For example, the sentence ”Adam ne donne à Ève pas
que les pommes.” (Adam do not give to Eve only apple) is annotated
as Adam/SBC:sg ne/ADV donne/SBC:sg à/PREP Ève/SBC:sg
pas/ADV que/SUB les/DTN:pl pommes/SBC:pl ./.. The verb
donne is tagged as common noun SBC and not as a verb. There are 17
sentences contain donne tagged as SBC and 28 sentences which contain
the past participle ”été” of the verbe ”être” are also tagged as SBC. Errors
like these lead to 314 sentences that have been analyzed as incorrect sen-
tences. The example in Figure 6 shows the reason why we have obtained
several analyses for this sentence. We note that the word ”la”, (the) is only
tagged by T.T model as ”determiner”. Thus, there is only one CDG class
corresponding to this LU: ”Det(Lex=art|pn)”, while Base model
leaves all the CDG classes for this word. More precisely, the word la has
in the grammar three different CDG classes, because this LU has differ-
ent syntactic categories in Lefff such as det, nc and pro as illustrated in
Table 12.

Table 12. Some features and classes in the Database for LU ”La”.

Form Cat Class
la cla PN(Lex=pers,C=a)
la cla PN(Lex=pn,F=clit,C=a)
la det Det(Lex=art—pn)
la nc N(Lex=common)

This lexical ambiguity in Base model leads to several analyses of this
sentence. This example shows the importance of the assignment of proper
POS tag to every word in a sentence which is to be parsed.

In the one hand, the POS tagging reduces the search space for the
parser, and also reduces ambiguity, improving parsing by limiting the
search space. The sentences are also more often completely analyzed

POS TAGGERS AND DEPENDENCY PARSING 121

by the parser, because the search space is smaller as compared to Base
model.

On the other hand, using POS tagging, we lost some analyses for the
reason of POS tagging errors. These sentences have been considered as
incorrect sentences by the parser.

6 CONCLUSION

This paper evaluates the rate of improving dependency parsing through
using different POS-tag models. These models choose the most proba-
ble grammatical classes for a word in a sentence based on POS tags,
unfortunately at the cost of losing some correct analyses. Our experimen-
tal results have demonstrated the utility of POS-based parsing models.
These models achieved substantial reductions of the number of depen-
dency trees and of composition trees per sentence. Our experiments also
show that to obtain an interesting system, the model used by the POS
tagger must be compatible to the lexical model of the parser.

REFERENCES

1. Alfared, R., Béchet, D., Dikovsky, A.: “CDG LAB”: a toolbox for dependency
grammars and dependency treebanks development. In: K. Gerdes, E. Haji-
cova, and L. Wanner (Eds.), Proc. of the 1st Intern. Conf. on Dependency
Linguistics (Depling 2011), Barcelona, Spain (September 2011)

2. Dikovsky, A.: Dependencies as categories. In: “Recent Advances in Depen-
dency Grammars”. COLING’04 Workshop. (2004) 90–97

3. Dekhtyar, M., Dikovsky, A.: Categorial dependency grammars. In Moortgat,
M., ed.: Proceedings of Categorial Grammars 2004. (2004) 76–91

4. Béchet, D., Dikovsky, A., Foret, A.: Dependency structure grammar. In
Philippe Blache, Edward Stabler, J.B., Moot, R., eds.: Proceedings of the 5th
International Conference on Logical Aspects of Computational Linguistics,
Bordeaux, France, April 2005. Volume 3492 of Lecture Notes in Artificial
Intelligence (LNAI)., Springer-Verlag (April 2005) 18–34

5. Dekhtyar, M., Dikovsky, A.: Generalized categorial dependency grammars.
In: Pillars of Computer Science’08. (2008) 230–255

6. Dikovsky, A.: Towards wide coverage categorical dependency grammars. In:
Proceedings of the ESSLLI’2009 Workshop Parsing with Categorial Gram-
mars - Parsing with Categorial Grammars Workshop ESSLLI 2009 Book of
Abstracts. (2009) 230–255

7. Sagot, B.: The lefff, a freely available and large-coverage morphological and
syntactic lexicon for french. In Calzolari (Conference Chair), N., Choukri,

122 RAMADAN ALFARED AND DENIS BÉCHET

K., Maegaard, B., Mariani, J., Odijk, J., Piperidis, S., Rosner, M., Tapias,
D., eds.: Proceedings of the Seventh conference on International Language
Resources and Evaluation (LREC’10), Valletta, Malta, European Language
Resources Association (ELRA) (may 2010)

8. Schmid, H.: Probabilistic part-of-speech tagging using decision trees. In:
Proceedings of International Conference on New Methods in Language Pro-
cessing, Manchester, UK. (1994)

9. Denis, P., Sagot, B.: Coupling an annotated corpus and a morphosyntactic
lexicon for state-of-the-art POS tagging with less human effort. In: Pacific
Asia Conference on Language, Information and Computation, Hong Kong,
Chine (2009)

10. Brill, E.: Some advances in transformation-based part of speech tagging.
In: Proceedings of the twelfth national conference on artificial intelligence.
(1994) 722–727

11. Abeillé, A., Barrier, N.: Enriching a french treebank. In: Proc. of LREC’04,
Lisbon, Portugal (2004)

12. Candito, M., Crabbé, B., Denis, P.: Statistical french dependency parsing:
Treebank conversion and first results. In Calzolari (Conference Chair), N.,
Choukri, K., Maegaard, B., Mariani, J., Odijk, J., Piperidis, S., Rosner, M.,
Tapias, D., eds.: Proceedings of the Seventh conference on International Lan-
guage Resources and Evaluation (LREC’10), Valletta, Malta, European Lan-
guage Resources Association (ELRA) (may 2010)

13. Petrov, S., Barrett, L., Thibaux, R., Klein, D.: Learning accurate, compact,
and interpretable tree annotation. In: ACL’06. (2006) 433–440

14. McDonald, R.: Discriminative Training and Spanning Tree Algorithms for
Dependency Parsing. PhD thesis, University of Pennsylvania (July 2006)

RAMADAN ALFARED
LINA,

UNIVERSITY OF NANTES,
2, RUE DE LA HOUSSINIÈRE, 44000 NANTES, FRANCE

E-MAIL: <RAMADAN.ALFARED@ETU.UNIV-NANTES.FR>

DENIS BÉCHET
LINA,

UNIVERSITY OF NANTES,
2, RUE DE LA HOUSSINIÈRE, 44000 NANTES, FRANCE

E-MAIL: <DENIS.BECHET@UNIV-NANTES.FR>

IJCLA VOL. 3, NO. 2, JUL-DEC 2012, PP. 123–134
RECEIVED 31/10/11 ACCEPTED 09/12/11 FINAL 08/06/12

Exploring Self-training and Co-training
for Dependency Parsing

RAHUL GOUTAM AND BHARAT RAM AMBATI

IIIT-H, India

ABSTRACT

We explore the effect of self-training and co-training on Hindi
dependency parsing. We use Malt parser, which is a state-of-
the-art Hindi dependency parser, and apply self-training using
a large unannotated corpus. For co-training, we use MST
parser with comparable accuracy to the Malt parser.
Experiments are performed using two types of raw corpora—
one from the same domain as the test data and another, which
is out-of-domain from the test data. Through these
experiments, we compare the impact of self-training and co-
training on Hindi dependency parsing.

KEYWORDS: Bootstrapping, dependency parsing, syntax,
morphologically rich language.

1 INTRODUCTION

Parsing morphologically rich free-word-order languages like Czech,
Hindi, Turkish, etc., is a challenging task. Unlike English, most of the
parsers for such languages have adopted the dependency grammatical
framework. It is a well-known fact that for these languages,
dependency framework is better suited [18, 12, 2]. Due to the
availability of annotated corpora in recent years, data driven
dependency parsing has achieved considerable success. In spite of
availability of annotated treebanks, state-of-the art parsers for these

RAHUL GOUTAM, BHARAT RAM AMBATI 124

languages have not reached the performance obtained for English [14].
Frequently stated reasons for low performance are small treebank size,
complex linguistic phenomena, long distance dependencies, and non-
projective structures [14, 15, 3].

In this paper, we try to address the problem of small treebank size.
We have lots of unannotated data. One way to increase treebank size is
to manually annotate this data. But it is a very time consuming task.
Another way is to parse this data using an existing parser and consider
these automatic parses. But, what criteria should be used for extracting
reliable parses from the automatically parsed data is a really
challenging task.

In this paper, we explore the effect of two bootstrapping techniques,
namely, self-training and co-training and see its impact on dependency
parsing accuracy. We use Malt parser, that is the state-of-the-art Hindi
dependency parser, and apply self-training using a large unannotated
corpus. We also use MST parser with accuracy comparable to Malt
parser and apply co-training.

We use two types of unannotated corpora, one from the same
domain as the test data and another from a different domain, to explore
the impact of domain of unannotated data on parsing accuracy. Though
we work and present our results on Hindi, this approach can be applied
to other languages with small treebanks like Telugu and Bangla.

This paper is arranged as follows. In Section 2, we describe the
related work in bootstrapping in parsing. In Section 3, we present the
state-of-the art Hindi dependency parser. In section 4, we report our
experiments and analyze the results. We conclude with possible future
work in Section 5.

2 RELATED WORK

In this section, we briefly describe the major works on bootstrapping in
statistical dependency parsing.

The authors of [19] perform experiments to show that unannotated
data can be used to improve the performance of statistical parsers by
bootstrapping techniques. The focus of their paper is on co-training
between two statistical parsers but they also perform self-training
experiments with each of the two parsers. Although the results of self-
training are not very encouraging, co-training experiments report
modest improvement in parsing accuracy. They also perform cross-
genre experiments to show that co-training is beneficial even when the
seed data is from a different domain compared to the unannotated data.

EXPLORING SELF-TRAINING AND CO-TRAINING 125

The authors of [17] also perform self-training by using unannotated
data from two different corpora - one in-domain and the other out-of-
domain. They show that parser adaptability can be enhanced via self-
training. They also report significant reduction in annotation cost and
amount of work because a small manually annotated seed data is used.

The authors of [10] use a two phase parser-reranker system for self-
training using readily available unannotated data. The two-phase parser
reranker system consists of a generative parser and a discriminative
reranker. They apply self-training on the generative parser only and not
on the discriminative reranker and report significant improvement in
accuracy over the previous state-of-the-art accuracy for Wall Street
Journal parsing.

All the above mentioned works are on phrase structure parsing of
English. There is an attempt at exploring usefulness of large raw corpus
for dependency parsing by [5]. They could achieve considerable
improvement over baseline for Chinese using only high confident edges
instead of entire sentences. In our work the focus is dependency parsing
of Hindi using a discriminative parser. We also explore how domain of
data affects the parser performance.

3 HINDI DEPENDENCY PARSING

In ICON 2009 and 2010, two tools contests were held that focused on
Indian Language dependency parsing [6, 7]. In these contests, rule-
based, constraint based, statistical and hybrid approaches were explored
towards building dependency parsers for Hindi. In 2009 contest, given
the gold standard chunk heads, the task was to find dependencies
between them. But in 2010 contest, given words with gold features like
part-of-speech (POS) and morph information, the task was to find word
level dependency parse. The ICON 2010 tools contest Hindi data
consists of 2972, 543 and 321 sentences for training, development and
testing with an average sentence length of 22.6. This data is a part of a
larger treebank [4] which is under development. This is a news corpus
taken from well-known Hindi news daily.

3.1 Baseline (State-of-the-art) System

We consider the best system [8] in ICON 2010 tools contest as the
starting point. [8] used MaltParser [15] and achieved 94.5% Unlabeled

RAHUL GOUTAM, BHARAT RAM AMBATI 126

Attachment Score (UAS) and 88.6% Labeled Attachment Score (LAS).
They could achieve this using liblinear learner and nivrestandard
parsing algorithm. But, as mentioned above, POS and other features
used in this system were gold standard. The only available system
which uses automatically extracted features and does complete word
level parsing for Hindi is [1]. Though both [1] and [8] used MaltParser,
the data used is the subset of the one used by the latter and the parser
settings were slightly different.

Table 1. Comparison of Different Systems

System UAS LAS LS
Ambati et al. (2010)+ automatic features 85.5% 75.4% 78.9%
Kosaraju et al.(2010) + gold features 94.5% 88.6% 90.0%
Kosaraju et al.(2010) + automaticFeatures 86.5% 77.9% 81.7%

Taking training data and parser settings of Kosaraju et al. (2010) and
automatic features similar to Ambati et al. (2010), we developed a
parser and evaluated it on the ICON 2010 tools contest test data. We
could achieve LAS of 77.9% and UAS of 86.5% on test set. This is the
state-of-the-art system for Hindi dependency parsing using automatic
features. We consider this system as our baseline and try to explore
bootstrapping techniques to improve accuracy.

4 EXPERIMENTS AND ANALYSIS

4.1 Self-Training

The parser used for self-training experiments is the Malt parser. We
apply the settings of [8] along with automatic features (last line of
Table 1). The parser is first trained on the ICON 2010 training data for
Hindi. The model generated is then used to parse the unannotated
corpus.

In the self-training experiments, we add the data incrementally in
iterations. At each iteration, 1000 sentences are chosen randomly from
the unannotated corpus which has been parsed by the model generated
above and added to the training data. The parser is then trained again
and the generated model is used to parse the test data.

EXPLORING SELF-TRAINING AND CO-TRAINING 127

Self-training experiments were performed using two types of data:
one from the news domain (in-domain) and another from a different
domain comprising mostly tourism data (out-of-domain).

4.1.1 Self-Training: In-Domain

We have taken unannotated news corpus of about 108,000 sentences.
As a first step, we have cleaned the data. In this process, we removed
the repeated sentences, and very large sentences (greater than 100
words per sentence).

Performance of the system on test data for the first 50 iterations is
shown in Figures 1 and 2. Best accuracies of 78.6% LAS and 87%
UAS were achieved, an improvement of 0.7% and 0.5% respectively.

4.1.2 Self-Training: Out-of-Domain

In this experiment, unannotated data from a domain different from the
actual training and testing data is used for self- training. For this
purpose, we have taken a non-news corpus of about 700,000 sentences.
Similar to in-domain data, we first cleaned the data.

Performance of the resulting system on test data for the first 50
iterations is shown in Figures 1 and 2. There isnt any improvement in
LAS over the baseline. Best accuracy of 77.8% LAS and 86.8% UAS
was observed, an improvement of 0.3% in UAS, but a decrement of
0.1% in LAS.

4.2 Co-Training

The parsers used for co-training experiments are the Malt parser and
the MST parser [6]. We have optimized the MST parser by modifying
the feature extraction module so that the parser extracts relevant
features for a morphologically rich language like Hindi. The best
accuracy we achieved on the test set is 77.0% LAS and 86.5% UAS.

Using the best settings of the MST parser obtained above, a model is
trained using the training set of ICON 2010 Hindi data with automatic
features. This model is then used to parse the unannotated data. As in the
self-training experiments, data are added incrementally in iterations. At
each iteration, 1000 sentences are chosen randomly from the MST parser
output and added to the training data of Malt parser. Malt parser is then
trained again and the generated model is used to parse the test data.

RAHUL GOUTAM, BHARAT RAM AMBATI 128

Fig. 1. Self-Training: UAS

Fig. 2. Self-Training: LAS

EXPLORING SELF-TRAINING AND CO-TRAINING 129

4.2.1 Co-Training: In-Domain

The unannotated corpus used is the same as that used in self-training:
in-domain experiments. Performance of the system is shown in Figures
3 and 4. Best accuracy of 78.6% LAS and 87.0% UAS was achieved,
an improvement of 0.7% and 0.5%, respectively.

4.2.2 Co-Training: Out-of-Domain

The corpus used for out-of-domain experiments is the same as that used
in self-training: out-of-domain experiments. Performance of the system
is shown in Figures 3 and 4. There is a decrease in both UAS and LAS.
The decrease in LAS is more compared to UAS.

4.3 Co-Training: Sentence Selection via Agreement

In this experiment, Malt and MST parsers are first trained using the
training set of ICON 2010 Hindi data and then used to parse the
unannotated data. The output of both parsers are then compared and
sentences for which both Malt and MST parsers give the same parse are
selected for bootstrapping. As in previous experiments, data is added
incrementally with 1000 sentences per iteration. The 1000 sentences
are chosen randomly from the pool of selected sentences and added to
the training data of Malt parser. The parser is then trained again and the
generated model is used to parse the test data.

4.3.1 In-Domain Scenario

The unannotated news corpus has approximately 108,000 sentences and
both Malt and MST parsers gave the same parse for 10,461 sentences.
These 10,461 sentences constitute our pool of selected sentences.

Performance of the system is shown in Figures 5 and 6. We achieved
78.8% LAS and 87.1% UAS, an improvement of 0.9% and 0.6%
respectively over the baseline.

4.3.2 Out-of-Domain Scenario

The unannotated non-news corpus has approximately 700,000
sentences and both Malt and MST parsers gave the same parse for
45,328 sentences. These 45,328 sentences constitute our pool of
selected sentences.

RAHUL GOUTAM, BHARAT RAM AMBATI 130

Fig. 3. Co-Training : UAS

Fig. 4. Co-Training : LAS

EXPLORING SELF-TRAINING AND CO-TRAINING 131

Performance of the system for the first 12 iterations is shown in
Figures 5 and 6. The remaining iterations are not shown because they
follow a similar trend as the first few iterations. There is no
improvement in LAS and UAS.

4.4. Analysis

Table 2 gives the summary comparing all the experiments performed.
The * mark in the table shows that accuracy is statistically significant
over the baseline. Significance is calculated using McNemar’s test
(p ≤ 0.05) made available with MaltEval [13].

Table 2. Summary of experiments

System UAS LAS LS
Baseline 86.5% 77.9% 81.7%
In-Domain Self-Training 87.0%* 78.6%* 82.3%*
Out-of-Domain Self-Training 86.8% 77.8% 81.6%
In-Domain Co-Training 87.0%* 78.6%* 82.2%*
Out-of-Domain Co-Training 86.5% 78.2% 82.0%
In-Domain Co-Training via Agreement 87.1%* 78.8%* 82.6%*
Out-of-Domain Co-Training v/ Agreement 86.5% 77.8% 81.6%

We could achieve significant improvement in accuracy over state-of-
the-art system by applying bootstrapping with unannotated data from
the same domain. There was a decrease in parser performance when
data from a different domain was used. This clearly showed the
importance of domain when applying bootstrapping in statistical
parsers. Self-training and co-training both gave roughly the same
improvement in performance for both UAS and LAS which is achieved
after 23 iterations for self-training and 14 iterations for co-training. Co-
training via agreement gave greater improvement in less number of
iterations due to better sentence selection criteria.

We have also experimented with different sentence selection criteria.
Classification scores were obtained for each labeled attachment for
both the Malt and MST parsers. These scores represent the liblinear
classification score for Malt and the maxent labeler probability for
MST. These scores were then used to calculate the confidence score of
a sentence.

RAHUL GOUTAM, BHARAT RAM AMBATI 132

Fig. 5. Co-training v/ agreement: UAS

Fig. 6. Co-training v/ agreement: LAS

EXPLORING SELF-TRAINING AND CO-TRAINING 133

We have experimented with different methods to calculate
confidence score of sentence, such as

− average score of labeled attachment,
− threshold on maximum and minimum score of all labeled

attachments in sentence,
− normalized product,
− considering inter-chunk attachment scores only as accuracy of

intra-chunk attachment is very high [1].

The most confident sentences were then added to the training data for
the next iteration of bootstrapping. All these methods gave modest
improvement, but the best improvement we could obtain was by
selecting sentences via agreement between the two parsers.

We analyzed the label-wise precision of in-domain self-training
experiments and found that there is significant improvement in
precision of labels for which Malt parser is poor at identifying. For
example, precision of label “main” (root of the sentence) increased
from 65.4% to 84.8%. We observed two major reasons for it:

Increase in vocabulary. Approximately 30% of nodes correctly
classified as “main” in the self-trained system (but not in the baseline
system) are out-of-vocabulary words.

Most of the remaining cases were highly ambiguous that got
correctly identified because of better feature tuning. In case of co-
training, improvement in recall was observed across most labels, but
there was a drop in precision.

5 CONCLUSION AND FUTURE WORK

We explored the effect of applying bootstrapping techniques self-
training and co-training on Hindi Dependency Parsing. We also
performed in-domain and out-of-domain experiments to analyze the
impact of domain on bootstrapping. We also explored different
selection criteria and our results showed that the selection criteria need
not be very sophisticated. Even random selection of sentences or simple
agreement between the two parsers for sentence selection gives
significant improvement in parsing accuracy.

In the future, instead of using whole sentence parse, we plan to use
sub-parses that the parser is confident about to be used in

RAHUL GOUTAM, BHARAT RAM AMBATI 134

bootstrapping. We also plan to apply bootstrapping in other Indian
languages such as Telugu and Bangla.

REFERENCES

1. Ambati, B. R., Gupta, M., Husain, S., Sharma, D. M.: 2010. A high recall

error identification tool for Hindi treebank validation. Proceedings of
The7th International Conference on Language Resources and Evaluation
(LREC), Valleta, Malta.

2. Bharati, A., Chaitanya, V., Sangal, R.: 1995. Natural Language
Processing: A Paninian Perspective. Prentice-Hall of India, New Delhi.

3. Bharati, A Husain, S., Ambati, B., Jain, S., Sharma, D., Sangal, R.: 2008.
Two semantic features make all the difference in parsing accuracy. In
Proceedings of ICON-08.

4. Bhatt, R., Narasimhan, B., Palmer, M., Rambow, O., Sharma, D. M., Xia,
F. 2009.: Multi Representational and Multi-Layered Treebank for
Hindi/Urdu. In proceedings of the Third Linguistic Annotation Workshop
at 47 th ACL and 4th IJCNLP.

5. Chen, W., Wu, Y., Isahara, H.: 2008. Learning reliable information for
dependency parsing adaptation. In Proceedings of the 22nd International
Conference on Computational Linguistics (COLING).

6. Husain, S.: 2009. Dependency Parsers for Indian Languages. In
Proceedings of ICON09 NLP Tools Contest: Indian Language
Dependency Parsing. Hyderabad, India.

7. Husain, S., Mannem, P., Ambati, B., Gadde, P.: 2010. The ICON- 2010
Tools Contest on Indian Language Dependency Parsing. In Proceedings of
ICON-2010 Tools Contest on Indian Language Dependency
Parsing.Kharagpur, India.

8. Kosaraju, P., Kesidi, S. R., Ainavolu, V. B. R., Kukkadapu, P.: 2010.
Experiments on Indian Language Dependency Parsing. In Proc. of the
ICON-2010 NLP Tools Contest: Indian Language Dependency Parsing.

9. Mannem, P., Dara, A.: 2011. Partial Parsing from Bitext Projections. In
Proceedings of the 49th Annual Meeting of the Association of
Computational Linguistics.

10. McClosky, D., Charniak, E., Johnson, M.: 2006. Effective Self- Training
for Parsing. In Proceedings of the main conference on Human Language
Technology Conference of the North American Chapter of the Association
of Computational Linguistics.

11. McDonald, R., Lerman, K., Pereira, F.: 2006. Multilingual dependency
analysis with a two-stage discriminative parser. In Proceedings of the
Tenth Conference on Computational Natural Language Learning (CoNLL-
X), pp. 216220.

12. Mel’čuk, I. A.: 1988. Dependency Syntax: Theory and Practice. State
University Press of New York.

EXPLORING SELF-TRAINING AND CO-TRAINING 135

13. Nilsson, I. J., Nivre, J. 2008. Malteval: An evaluation and visualization
tool for dependency parsing. In Proceedings of the Sixth LREC,
Marrakech, Morocco.

14. Nivre, J., Hall, J., Kubler, S., McDonald, R., Nilsson, J., Riedel, S., Yuret,
D. 2007a. TheCoNLL 2007 Shared Task on Dependency Parsing. In
Proceedings of EMNLP/CoNLL-2007.

15. Nivre, J., Hall, J., Nilsson, J., Chanev, A., Eryigit, G., Kbler, S., Marinov,
S., Marsi, E. 2007b. MaltParser: A language-independent system for data-
driven dependency parsing. Natural Language Engineering, 13(2), 95-135.

16. Nivre, J., Rimell, L., McDonald, R., GmezRodrguez, C. 2010. Evaluation
of Dependency Parsers on Unbounded Dependencies.In proceedings of the
International Conference on Computational Linguistics (COLING).

17. Reichart, R., Rappoport, A. 2007. Self-Training for Enhancement and
Domain Adaptation of Statistical Parsers Trained on Small Datasets. In
Proceedings of the 45th Annual Meeting of the Association of
Computational Linguistics.

18. Shieber, S. M. 1985. Evidence against the contextfreeness of natural
language. In Linguistics and Philosophy, p. 8, 334343.

19. Steedman, M. Osborne, M., Sarkar, A., Clark, S., Hwa, R., Hockenmaier,
J., Ruhlen, P., Baker, S., Crim, J. 2003. Bootstrapping Statistical Parsers
from Small Datasets.In Proceedings of the tenth conference on European
chapter of the Association for Computational Linguistics Volume 1.

20. Aho, A. V., Ullman, J. D. 1972. The Theory of Parsing, Translation and
Compiling, volume 1. Prentice-Hall, Englewood Cliffs, NJ.

21. American Psychological Association. 1983. Publications Manual.
American Psychological Association, Washington, DC.

22. Association for Computing Machinery. 1983. Computing Reviews,
24(11):503–512.

23. Chandra, A. K., Kozen, D. C., Stockmeyer, L. J. 1981. Alternation.
Journal of the Association for Computing Machinery, 28(1):114–133.

24. Gusfield, D. 1997. Algorithms on Strings, Trees and Sequences.
Cambridge University Press, Cambridge, UK.

RAHUL GOUTAM
LANGUAGE TECHNOLOGIES RESEARCH INSTITUTE, IIIT-H,

OBH-208, GACHIBOWLI, HYDERABAD, 500032, INDIA.
E-MAIL : <RAHUL.GOUTAM@RESEARCH.IIIT .AC.IN>

BHARAT RAM AMBATI
LANGUAGE TECHNOLOGIES RESEARCH INSTITUTE, IIIT-H,

OBH-208, GACHIBOWLI, HYDERABAD, 500032, INDIA.
E-MAIL : <AMBATI @RESEARCH.IIIT .AC.IN>

IJCLA VOL. 3, NO. 2, JUL-DEC 2012, PP. 135–150
RECEIVED 30/11/12 ACCEPTED 10/12/12 FINAL 12/12/12

Entity Linking by Leveraging Extensive Corpus
and Semantic Knowledge

YUHANG GUO, BING QIN, TING LIU, AND SHENG LI

Harbin Institute of Technology, China

ABSTRACT

Linking entities in free text to the referent knowledge base entries,
namely, entity linking is attractive because it connects unstruc-
tured data with structured knowledge. An essential part of this
task is the modeling of the entity. Several methods have been pro-
posed to this problem, but they suffer from the sparseness prob-
lem. In this paper, we present a new approach to the entity mod-
eling. This approach models an entity by leveraging extensive
entity-related corpus to overcome the sparseness, and alleviates
the data imbalance between popular and unpopular entities by
smoothing. Furthermore, we propose a novel model for the en-
tity linking, which combines contextual relatedness and seman-
tic knowledge. Experimental results on two benchmark data sets
show that our proposed approach outperforms the state-of-the-
art methods significantly.

KEYWORDS: Entity Linking, Data Imbalance, Smoothing, Se-
mantic Knowledge

1 INTRODUCTION

Bridging unstructured text with structured knowledge is widely needed in
many natural language processing and data mining tasks. In recent years,
as large scale knowledge bases (e.g. Wikipedia1) become available, the

1 http://www.wikipedia.org

136 YUHANG GUO, BING QIN, TING LIU, SHENG LI

entity linking task, which links named entities in free text to the referent
knowledge base entries, is attracting more and more attentions.

The major challenge of entity linking is that in natural language a
name may refer to different entities in different contexts (i.e. the name
ambiguity). In the past, many disambiguation methods have been pro-
posed and gained certain success[1–7]. An essential part of the task is
entity modeling. In previous methods, an entity is usually modeled as
bag-of-words to measure the contextual similarity between the entity and
the surrounding text. In the bag-of-words model, the entity is represented
in a term vector of the corresponding entity-description text (e.g. the
content of the entity’s Wikipedia page). The term here may indicate a
word, a named entity or a phrase. However, due to the limited amount of
the entity-description text, such model suffers from sparseness problem.
Therefore, additional features are incorporated to enhance this model,
such as Wikipedia category tags[1], topics[8–12] and neighboring en-
tities[2, 13–18]. However, these features depend on specific knowledge
bases[1], need high complexity computation[13] and also suffer from the
sparseness problem.

On the other hand, a virtue of the modern knowledge bases (e.g.
Wikipedia, DBpedia[19], etc.) is that they contain not only large amount
of entities but also massive internal links. In Wikipedia, the number of
internal links is over 25 times as the number of articles2. These links
directly lead a reader to the pages of the entities which are mentioned
in the article. Assuming that an entity is related to the text where it is
linked, all such texts can be harvested and combined as the training text
of this entity. Here we call the combined entity-related training text entity
document.

However, the above method brings a new problem: the data imbal-
ance. Because popular entities are usually linked by more articles than
unpopular ones, the entity document size of the popular entities is much
bigger than the unpopular entities. This highly skewed distribution will
harm system performance. In previous, the training data has to be reduced
due to the data imbalance although potentially useful information may be
lost [2, 7].

In this paper, we propose an approach to alleviate the data imbal-
ance problem without the data reduction. Our approach is based on lan-
guage model smoothing. Specifically, we compare two smoothing meth-
ods: Jelinek-Mercer smoothing[20] and Dirichlet prior smoothing[21].

2 http://stats.wikimedia.org/EN/TablesWikipediaEN.htm

ENTITY LINKING BY LEVERAGING EXTENSIVE CORPUS 137

The two methods perform similarly in traditional information retrieval
[22]. Interestingly, in entity linking the Dirichlet prior smoothing is effi-
cient to the data imbalance problem and outperforms the Jelinek-Mercer
smoothing.

Moreover, since the objective of entity linking is to find the referent
entity rather than the most contextually related texts, the effect of seman-
tic features should not be underestimated. However, in the basic language
model, little semantic information is used. In this paper, we propose a
novel probabilistic model which we call alias model. This model can not
only capture contextual relatedness between the context and entity but
also leverage semantic knowledge in the context to distinguish the ref-
erent entity from other contextually related entities. Evaluation on two
benchmark data sets indicates that our proposed method performs better
than the state-of-the-art entity linking significantly.

2 PROBLEM AND APPROACH OVERVIEW

Let E be the set of all entities in the real world. K ⊆ E is a knowledge
base. Each entity e ∈ K has a set of attributes, such as names/aliases,
description texts and cross references to other entities, etc.

The entity linking problem is the following: for a name mention m
in a given query document d, find the referent entity e in K, if e /∈ K
return NIL. The query name mention and the query document constitute
a query as the input and the referent entity or NIL is the expected output.

We evaluate our approach on two data sets: KBP2009 and KBP2010,
which are taken from the Knowledge Base Population (KBP) Track[23, 4,
24]. KBP2009 contains 3,904 queries, in which all the query documents
are newswire articles. KBP2010 contains 2,250 queries. The query doc-
uments of 1,500 queries are newswire articles and the rest 750 are web
texts. KBP2009 and KBP2010 share the same knowledge base which is
derived from Wikipedia and contains 818,741 entities. In both of the data
sets, over a half of the referent entities (2229/3904 and 1230/2250) are
absent from the track knowledge base and should be labeled as NIL.

The entity linking task can be broken down into two steps: candidate
generation and candidate ranking. For the first step, the system selects
candidate entities which may be represented in the form of the query
name. This step reduces the cost from computing all entities down to a
much smaller set of entities. For the second step, the system ranks the
candidates and output the top rank candidate. In this paper, we mainly
focus on the ranking method and use a simple method to detect the NIL

138 YUHANG GUO, BING QIN, TING LIU, SHENG LI

answer: if the candidate set is empty or the top ranked entity is absent
from the track knowledge base then return NIL.

3 CANDIDATE GENERATION

The goal of the candidate generation is to obtain as many potential entities
as possible for the given query name. Wikipedia provides disambigua-
tion pages and redirect pages from which the candidates can be obtained.
However the coverage of this method is not enough for this task because
the query name may not be included in the disambiguation pages and the
redirect pages. In this work, we explore the name variations for each en-
tity in Wikipedia and construct a name-entity mapping. The candidates
are then generated from this mapping directly.

Given an entity, we extract its names from the following sources in
Wikipedia: title, redirect page titles, disambiguation page titles, bold text
in the first paragraph of the entity, name field in the Infobox (e.g. “name”,
“birth name” or “nick name”), and the anchor text of the hyperlinks
which link to the entity.

We use the Jun. 20, 2011 version of English Wikipedia dump. In
all 140.7 million name-entity pairs which contain 17.3 million names
and 3.7 million entities. The name-entity mapping also includes the co-
occurrence frequency of the name-entity pairs in Wikipedia. We pub-
lished this data so that researchers can reproduce our results.

In general, acronym name is more ambiguous than the relevant full
name and hence is more difficult to be disambiguated. For example, the
acronym ABC can be mapped to 79 entities in our name-entity mapping.
Meanwhile, the full name All Basotho Convention is unambiguous. For-
tunately, in some cases the acronyms can be extended to their full forms
according to the query document. The following cases are considered:

– The acronym is in a pair of parentheses and the full name is in front
of the acronym. (e.g. ... the newly-formed All Basotho Convention
(ABC) is far from certain ...)

– The full name is in a pair of parentheses and the acronym is in front
of the full name. (e.g. ... at a time when the CCP (Chinese Communist
Party) claims ...)

– The acronym consists of the initial letters of the full name words.
(e.g. ... leaders of Merkel’s Christian Democratic Union ... CDU ...)

Given a query name, if it is an acronym, we first attempt to extend its
acronym in the query document and then substitute the query name with

ENTITY LINKING BY LEVERAGING EXTENSIVE CORPUS 139

the full name. We search the query name in the name-entity mapping and
obtain the corresponding candidate entities.

The candidate generation recalls for the non-NIL queries are 91.6%
and 94.9% on KBP2009 and KBP2010 data set respectively. Table 1
shows the number of all unique candidates and the average number of
candidates per query.

Table 1. Result of the candidate generation on KBP2009 and KBP2010 data set.

Data Set KBP2009 KBP2010
of queries 3904 2250
of non-NIL queries 1675 1020
of unique candidates 7706 23682
of candidates/query 22 35
Recall of non-NIL queries 91.6% 95.4%

4 CANDIDATE RANKING

In this section, we present a probabilistic model for the candidate ranking.
Next we show the data imbalance between popular and unpopular enti-
ties and present how to alleviate the imbalance in the model estimation.
Then we propose a novel probabilistic model for entity linking, the alias
model, which can improve system performance by leveraging semantic
knowledge.

4.1 Probabilistic Model

In this model, a document is considered as “generated” from a word dis-
tribution (e.g. language model). In this sense, the query document d is
generated in the following steps: the document author first chooses the
entity in mind (the knowledge base), as well as the corresponding name
he/she wants to present, and then selects contextual words according to
the language model of the entity.

Formally, let e and m denote the referent entity and the mention to be
disambiguated. The objective function of entity linking is:

e∗ = argmax
e

P (e,m)P (d|e) (1)

140 YUHANG GUO, BING QIN, TING LIU, SHENG LI

where P (e,m) is the prior probability of e and m, and P (d|e) is the
generative probability of d from the model of e.

Let f(e,m) denote the co-occurrence frequency of entity e and its
mention m in the name-entity mapping. The maximum likelihood esti-
mation of the prior probability is

P (e,m) =
f(m, e)∑

e′,n′ f(n′, e′)
(2)

where e′ ∈ K, n′ ∈ N(e′). N(e′) is the set of all names of e′. P (e,m) is
the probability of a random observed entity-name pair (e′, n′) is just the
pair (e,m) we concern.

The unigram language model assigns the probability

P (d|e) =
∏
t∈d

P (t|θe) (3)

This is the likelihood of the query document d according to the model
of entity e. P (t|θe) is the probability of document term t generated by
the model of e. Here we assume the terms are sampled from a multino-
mial distribution. The model parameter θe is the multinomial distribution
parameter over terms.

The query document is modeled as a bag of terms surrounding the
mention m within a window in d. In our approach a term is a name in
the name-entity mapping. In our experiment, we extract the terms from
the document by using forward maximum matching algorithm which is
adopted from word segmentation [25]. We set the window size 50 accord-
ing to the setting of [26].

Let C(e) denote a bag of terms taken from the training text of e. Let
c(t, C(e)) be the count of t in C(e). The maximum likelihood estimation
of P (t|θe) is

PML(t|θe) =
c(t, C(e))

|C(e)|
(4)

where |C(e)| =
∑

t′∈V c(t
′, C(e)) is the length of the training text and

V is the set of all names in the name-entity mapping.

4.2 Data Imbalance

In previous methods, the entity model is usually trained by using the
entity-description text (e.g. the Wikipedia page of the entity). However,

ENTITY LINKING BY LEVERAGING EXTENSIVE CORPUS 141

this modeling suffers from sparseness because the lengths of many entity-
description texts are not enough to train robust models. In this work,
we overcome the sparseness by leveraging extensive corpus (i.e. the en-
tity document). The corpus is automatically derived from all the articles
which contain a hyperlink leading to the entity to be modeled. However,
the entity document lengths vary dramatically from popular entities to
unpopular entities (e.g. from millions of terms to several terms). Fig-
ure 1 shows the entity document length distribution on two data sets.
Note that the vertical axis is in log scale. From the curves we can see that
the distribution approximately obeys Zipf’s law[27]. On the both data
sets, the longest entity document is United States, which contains
118 million terms. The average entity document length on KBP2009 and
KBP2010 are 1.61× 105 and 1.42× 105, respectively. And the standard
deviations are 1.70 × 106 and 1.20 × 106, respectively. This means that
the entity document length distribution is highly imbalanced.

Fig. 1. Entity document length distribution over all the candidates on KBP2009
and KBP2010. The horizontal axis is the candidates ranked by the entity docu-
ment length. The vertical axis is the entity document length in logarithm scale.

The data imbalance problem is common in knowledge bases because
popular entries always have longer description texts and are cited by more
articles than unpopular ones. As the growth of the knowledge bases, this
information gap will be even larger. Because highly skewed distribution
will harm system performance, the training corpus has to be reduced:
drop some of the citation articles[2], or set a window around the citation
of the entity[7]. Obviously, in this way some useful information about
the entity will be lost. In this paper, we propose to employ all the entity-

142 YUHANG GUO, BING QIN, TING LIU, SHENG LI

related text for the training and alleviate the imbalance based on smooth-
ing method.

4.3 Smoothing

Because in the maximum likelihood estimation PML(t|θe), the proba-
bility of unseen terms in C(e) is zero, assigning non-zero probability
according to some “background knowledge” to the unseen terms (i.e.
smoothing) is critical to the accuracy of the model. The “background
knowledge” here is the occurrence probability of t in the whole training
corpus collection, which is called background model.

P (t|θb) =
∑

e′∈K c(t, C(e
′))∑

e′∈K |C(e′)|
(5)

where θb denotes the parameter of the background model.
A direct smoothing is to combine the maximum likelihood estimate

and the background model by linear interpolation. This method is also
called Jelinek-Mercer smoothing (JM)[20], which is widely used in tra-
ditional information retrieval.

P (t|θe) = λPML(t|θe) + (1− λ)P (t|θb) (6)

where λ ∈ (0, 1) is a smoothing parameter to control the proportion of
the background model.

JM assigns the same background model proportion for each entity.
However, if a small λ is assigned to a “long” (entity document length)
entity, the distribution feature of the entity will be diluted by the back-
ground model. On the other hand, if a big λ is assigned to a “short” entity,
the estimate of the entity model will be sparse. Since the entity document
length varies dramatically, it is difficult to find a proper λ to provide good
estimates for both “long” and “short” entities.

An alternate smoothing, Dirichlet prior smoothing (DP)[21], adds
background model into the conjugate prior of the language model. The
smoothed estimate is

P (t|θe) =
|C(e)|
|C(e)|+ µ

PML(t|θe) +
µ

|C(e)|+ µ
P (t|θb) (7)

where µ is a smoothing parameter.
Comparing with JM, DP also interpolates maximum likelihood esti-

mate with background model. But the interpolation coefficient in DP is

ENTITY LINKING BY LEVERAGING EXTENSIVE CORPUS 143

affected by the length of the entity document. For a fixed µ, the model of
a “short” entity will be close to the background model, and the model of
a “long” entity will be close to the maximum likelihood estimate. There-
fore, both of the ”short” and the ”long” entities can benefit from this
estimation at the same time. In the experiment section, we will show that
the DP can alleviate the data imbalance and outperforms JM significantly.

4.4 Alias Model

Language modeling approaches can capture contextual relatedness be-
tween texts. However, a drawback of basic language model is that only
the term features are used. In this work, we combine the contextual lan-
guage model and more discriminative semantic features in a probabilistic
framework.

Intuitively, if several different names/aliases or an unambiguous name
of a candidate is observed in the document, the confidence on this candi-
date will increase. How to incorporate the name features into the model
is a problem. To this end, we propose a alias model which highlights the
name variations of the referent entity in the document.

Let n denote one of the names/aliases of e, we have

P (e,m, d) =
∑

n∈N(e)

P (n, e,m, d) = P (e,m)P (d|e)
∑

n∈N(e)

P (n|e, d)

(8)
where P (e,m) and P (d|e) can be estimated as in the basic language
model. We approximate the sum factor by∑

n∈N(e)

P (n|e, d) =
∑

n∈N(e)
⋂

d

P (n|e) (9)

The maximum likelihood estimation of P (n|e) is

P (n|e) = f(n, e)

f(e)
=

f(n, e)∑
n′∈N(e) f(n

′, e)
(10)

where f(e) is the frequency of entity e in the name-entity mapping.
Table 2 shows an example of how the basic language model can be

improved by the name variations in the query document. In this example,
the query name mention is UT and the referent entity is University
of Tampa. In the basic language model, the score3 of University

3 Here the score is log(P (e,m, d)).

144 YUHANG GUO, BING QIN, TING LIU, SHENG LI

of Texas at Austin is much higher than other candidates includ-
ing University of Tampa because the former entity is more con-
textual related to the query document. But if we notice that an alias,
Tampa, of University of Tampa appears in the query document,
our confidence on linking UT to University of Tampawill be higher.
In the alias model the score of University of Tampa increases
and is higher than University of Texas at Austin. The name
variations such as Tampa may appear in the language model of the string
University of Tampa too, but the weight of these important features
will be diluted by the large size of the entity document. In the alias model,
such semantic discriminative terms are emphasized separately.

Table 2. An example of the model comparison (using Dirichlet prior smoothing).

Candidates (e)
f(n, e)

f(e)
∑
P (n|e) BLM score AM score

UT Tampa
University 14 0 6,901 0.0020 –256.44 –262.64
of Texas
at Austin
University 3 114 449 0.2606 –260.66 –262.00
of Tampa

5 EXPERIMENTS

The evaluation metric is micro-averaged accuracy across the query set,
that is, the proportion of the queries which are labeled the correct entity
id in knowledge base (or NIL) by the system.

In order to compare with the previous systems, the first evaluation was
conducted on KBP2009. We compared our methods with the top three
system performances in the track (Siel 093, QUANTA1 and htlcoe1) and
four systems reported in [7]:

– The cosine similarity-based method on bag of words features: BoW
[2];

– The link similarity based method: TopicIndex[28];
– The improved link based method using machine learning techniques

to balance the semantic relatedness, commonness and context qual-
ity: Learning2Link[29];

ENTITY LINKING BY LEVERAGING EXTENSIVE CORPUS 145

– The entity-mention model proposed by [7]: EMM. EMM is a lan-
guage model based system with Jelinek-Mercer smoothing but is
trained on balanced training data.

The systems that we implemented are trained on extensive training
texts, including the basic language model based methods using Jelinek-
Mercer smoothing and Dirichlet prior smoothing respectively: BLM-JM,
BLM-DP and the alias model using the two smoothing methods: AM-JM,
AM-DP.

The system performances on KBP data sets are shown in Table 3,
where the three columns represent the system performance on: All queries
(All), in-knowledge-base-answer queries (inKB) and NIL-answer queries
(NIL) respectively. The results of BLM-JM, AM-JM, BLM-DP and AM-
DP are optimal over the smoothing parameters which we have searched.
AM-DP* on KBP2009 is the empirical optimal AM-DP result tuned on
KBP2010 and AM-DP* on KBP2010 is tuned on KBP2009. The optimal
values of λ and µ are shown in Table 4.

Table 3. Results on the KBP data set.

(a) KBP2009

All inKB NIL
Siel 093 0.82 0.77 0.86
QUANTA1 0.80 0.77 0.83
hltcoe1 0.79 0.71 0.87
BoW 0.72 0.77 0.65
TopicIndex 0.80 0.65 0.91
Learning2Link 0.83 0.73 0.90
EMM 0.86 0.79 0.90
BLM-JM 0.84 0.75 0.91
AM-JM 0.86 0.77 0.92
BLM-DP 0.87 0.81 0.91
AM-DP 0.88 0.81 0.93
AM-DP* 0.88 0.81 0.93

(b) KBP2010

All inKB NIL
LCC 0.86 0.79 0.91
Siel 0.82 0.72 0.90
CMCRC 0.82 0.74 0.89
KL 0.85 0.81 0.87
BLM-JM 0.84 0.79 0.89
AM-JM 0.85 0.79 0.90
BLM-DP 0.88 0.84 0.90
AM-DP 0.88 0.84 0.91
AM-DP* 0.88 0.84 0.91

As can be seen from Table 3(a), on KBP2009, our proposed method
(i.e. AM-DP*) outperforms the best ranking system in the KBP track
2009 by 6% improvement. Compared with the BoW, TopicIndex, and
Learning2Link baselines, our proposed method gets 16%, 8%, 5% im-

146 YUHANG GUO, BING QIN, TING LIU, SHENG LI

provements respectively. Our method also performs significantly better
than the state-of-the-art method: EMM (under Z-test with p < 0.01).

Table 4. Optimal parameters of Jelinek-Mercer (JM) smoothing and Dirichlet
prior (DP) smoothing on KBP2009 and KBP2010 data sets.

Smoothing JM(λ) DP(µ ×106)
Data Set 2009 2010 2009 2010
BLM 0.8 0.9 3.7 4.0
AM 0.75 0.7 3.7 4.0

Table 3(b) shows the system performances on KBP2010. We com-
pared our method with the top three systems in the track (LCC, Siel
and CMCRC) and a recently proposed KL-divergence based method:
KL[30]. Our proposed method also outperforms the best system signifi-
cantly (p < 0.05).

On the both data sets, the alias model performs better than the basic
language model. DP outperforms JM significantly (p < 0.01) in the basic
language model (up to 4%). AM-DP outperforms BLM-JM significantly
by 4% (p < 0.01.).

The improvement of the alias model on KBP2009 is more than that
on KBP2010. This is because the KBP2009 query documents are all news
articles which are rich in names whereas the KBP2010 query documents
consist of news and web text. Therefore, the number of effective aliases
in each document of KBP2009 are more than KBP2010 on average. This
indicates that the alias model performs better on the query documents
which are rich in names.

6 CONCLUSIONS

In this paper, we propose to use extensive entity-related corpus to over-
come the sparseness problem in the entity modeling of entity linking.
Due to the highly skewed distribution of the entities, the training data for
the entity modeling is highly imbalanced. We investigate language mod-
eling based approaches and find that Dirichlet prior smoothing performs
better than Jelinek-Mercer smoothing because it can leverage the length
of entity entity’s training text. The property of Dirichlet prior smoothing
makes it suitable for the data imbalance scenario. We further combine the

ENTITY LINKING BY LEVERAGING EXTENSIVE CORPUS 147

contextual language modeling and name variation feature in a probabilis-
tic framework and propose an alias model. Experimental results on two
standard test sets show that the Dirichlet prior smoothing performs better
than Jelinek-Mercer smoothing and our proposed model outperforms the
state-of-the-art performance significantly.

ACKNOWLEDGEMENTS This work was supported by National Natural
Science Foundation of China (NSFC) via grant 61273321, 61073126,
61133012 and the National 863 Leading Technology Research Project
via grant 2012AA011102.

REFERENCES

1. Bunescu, R.C., Pasca, M.: Using encyclopedic knowledge for named entity
disambiguation. In: EACL, The Association for Computer Linguistics (2006)

2. Cucerzan, S.: Large-scale named entity disambiguation based on Wikipedia
data. In: Proceedings of the 2007 Joint Conference on Empirical Methods in
Natural Language Processing and Computational Natural Language Learn-
ing (EMNLP-CoNLL), Prague, Czech Republic, Association for Computa-
tional Linguistics (June 2007) 708–716

3. Mihalcea, R., Csomai, A.: Wikify!: linking documents to encyclopedic
knowledge. In: CIKM ’07: Proceedings of the sixteenth ACM conference
on Conference on information and knowledge management, New York, NY,
USA, ACM (2007) 233–242

4. Dredze, M., McNamee, P., Rao, D., Gerber, A., Finin, T.: Entity disam-
biguation for knowledge base population. In: Proceedings of the 23rd Inter-
national Conference on Computational Linguistics (Coling 2010), Beijing,
China, Coling 2010 Organizing Committee (August 2010) 277–285

5. Zheng, Z., Li, F., Huang, M., Zhu, X.: Learning to link entities with knowl-
edge base. In: Human Language Technologies: The 2010 Annual Conference
of the North American Chapter of the Association for Computational Lin-
guistics, Los Angeles, California, Association for Computational Linguistics
(June 2010) 483–491

6. Zhang, W., Sim, Y.C., Su, J., Tan, C.L.: Entity linking with effective acronym
expansion, instance selection, and topic modeling. In Walsh, T., ed.: IJCAI
2011, Chiang Mai, Thailand (November 2011) 1909–1914

7. Han, X., Sun, L.: A generative entity-mention model for linking entities with
knowledge base. In: 49th Annual Meeting of the Association for Computa-
tional Linguistics: Human Language Techologies, Portland, Oregon, USA,
Association for Computational Linguistics (June 2011) 945–954

8. Cucerzan, S.: TAC entity linking by performing full-document entity extrac-
tion and disambiguation. In: Text Analysis Conference 2011. (2011)

148 YUHANG GUO, BING QIN, TING LIU, SHENG LI

9. Kataria, S.S., Kumar, K.S., Rastogi, R.R., Sen, P., Sengamedu, S.H.: Entity
disambiguation with hierarchical topic models. In: 17th ACM SIGKDD in-
ternational conference on Knowledge discovery and data mining, KDD ’11,
New York, NY, USA, ACM (2011) 1037–1045

10. Zhang, W., Su, J., Tan, C.L.: A Wikipedia-LDA model for entity linking
with batch size changing instance selection. In Walsh, T., ed.: IJCAI 2011,
Chiang Mai, Thailand (November 2011) 562–570

11. Sen, P.: Collective context-aware topic models for entity disambiguation. In:
21st international conference on World Wide Web, WWW ’12, New York,
NY, USA (2012) 729–738

12. Han, X., Sun, L.: An entity-topic model for entity linking. In: 2012
Joint Conference on Empirical Methods in Natural Language Processing and
Computational Natural Language Learning, Jeju Island, Korea, Association
for Computational Linguistics (July 2012) 105–115

13. Kulkarni, S., Singh, A., Ramakrishnan, G., Chakrabarti, S.: Collective anno-
tation of Wikipedia entities in web text. In: 15th ACM SIGKDD international
conference on Knowledge discovery and data mining, KDD ’09, New York,
NY, USA, ACM (2009) 457–466

14. Han, X., Sun, L., Zhao, J.: Collective entity linking in web text: a graph-
based method. In: 34th international ACM SIGIR conference on Research
and development in Information, SIGIR ’11, New York, NY, USA (2011)
765–774

15. Hoffart, J., Yosef, M.A., Bordino, I., Fürstenau, H., Pinkal, M., Spaniol, M.,
Taneva, B., Thater, S., Weikum, G.: Robust disambiguation of named entities
in text. In: 2011 Conference on Empirical Methods in Natural Language
Processing, Edinburgh, Scotland, UK. (July 2011) 782–792

16. He, J., de Rijke, M., Sevenster, M., van Ommering, R., Qian, Y.: Generating
links to background knowledge: a case study using narrative radiology re-
ports. In: 20th ACM international conference on Information and knowledge
management, CIKM ’11, New York, NY, USA (2011) 1867–1876

17. Ratinov, L., Roth, D., Downey, D., Anderson, M.: Local and global algo-
rithms for disambiguation to Wikipedia. In: 49th Annual Meeting of the
Association for Computational Linguistics: Human Language Technologies,
Portland, Oregon, USA (June 2011) 1375–1384

18. Shen, W., Wang, J., Luo, P., Wang, M.: Linden: linking named entities with
knowledge base via semantic knowledge. In: 21st international conference
on World Wide Web, WWW ’12, New York, NY, USA (2012) 449–458

19. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.:
Dbpedia: a nucleus for a web of open data. In: 6th international confer-
ence The semantic web and 2nd Asian conference on Asian semantic web,
ISWC’07/ASWC’07, Berlin, Heidelberg, Springer-Verlag (2007) 722–735

20. Jelinek, F., Mercer, R.L.: Interpolated estimation of Markov source param-
eters from sparse data. In: Workshop on Pattern Recognition in Practice,
Amsterdam, The Netherlands, North-Holland (May 1980) 381–397

ENTITY LINKING BY LEVERAGING EXTENSIVE CORPUS 149

21. MacKay, D.J.C., Peto, L.C.B.: A hierarchical dirichlet language model. Nat-
ural Language Engineering 1 (1995) 289–308

22. Zhai, C., Lafferty, J.: A study of smoothing methods for language models
applied to information retrieval. ACM Trans. Inf. Syst. 22 (April 2004) 179–
214

23. McNamee, P., Dang, H.: Overview of the tac 2009 knowledge base popu-
lation track. http://www.nist.gov/tac/publications/2009/
presentations/TAC2009_KBP_overview.pdf (2009)

24. Ji, H., Grishman, R.: Knowledge base population: Successful approaches
and challenges. In: 49th Annual Meeting of the Association for Computa-
tional Linguistics: Human Language Technologies, Portland, Oregon, USA,
Association for Computational Linguistics (June 2011) 1148–1158

25. Guo, J.: Critical tokenization and its properties. Comput. Linguist. 23 (De-
cember 1997) 569–596

26. Pedersen, T., Purandare, A., Kulkarni, A.: Name discrimination by cluster-
ing similar contexts. In Gelbukh, A., ed.: CICLing 2005, Lecture Notes in
Computer Science. Volume 3406., Springer (2005) 226–237

27. Zipf, G.K.: Human Behaviour and the Principle of Least Effort: An Intro-
duction to Human Ecology. Addison-Wesley (1949)

28. Medelyan, O., Witten, I.H., Milne, D.: Topic indexing with Wikipedia. In:
AAAI WikiAI workshop. Volume 1., AAAI Press (2008) 19–24

29. Milne, D., Witten, I.H.: Learning to link with wikipedia. In: CIKM ’08: Pro-
ceeding of the 17th ACM conference on Information and knowledge man-
agement, New York, NY, USA, ACM (2008) 509–518

30. Gottipati, S., Jiang, J.: Linking entities to a knowledge base with query ex-
pansion. In: 2011 Conference on Empirical Methods in Natural Language
Processing, Edinburgh, Scotland, UK., Association for Computational Lin-
guistics (July 2011) 804–813

YUHANG GUO
RESEARCH CENTER FOR SOCIAL COMPUTING AND INFORMATION

RETRIEVAL,
HARBIN INSTITUTE OF TECHNOLOGY,

CHINA
E-MAIL: <YHGUO@IR.HIT.EDU.CN>

BING QIN
RESEARCH CENTER FOR SOCIAL COMPUTING AND INFORMATION

RETRIEVAL,
HARBIN INSTITUTE OF TECHNOLOGY,

CHINA
E-MAIL: <BQIN@IR.HIT.EDU.CN>

150 YUHANG GUO, BING QIN, TING LIU, SHENG LI

TING LIU
(CORRESPONDING AUTHOR)

RESEARCH CENTER FOR SOCIAL COMPUTING AND INFORMATION
RETRIEVAL,

HARBIN INSTITUTE OF TECHNOLOGY,
CHINA

E-MAIL: <TLIU@IR.HIT.EDU.CN>

SHENG LI
RESEARCH CENTER FOR SOCIAL COMPUTING AND INFORMATION

RETRIEVAL,
HARBIN INSTITUTE OF TECHNOLOGY,

CHINA
E-MAIL: <SLI@IR.HIT.EDU.CN>

Applications

IJCLA VOL. 3, NO. 2, JUL-DEC 2012, PP. 153–166
RECEIVED 03/11/11 ACCEPTED 09/12/11 FINAL 08/06/12

Improving Finite-State Spell-Checker Suggestions
with Part of Speech N-Grams

TOMMI A. PIRINEN, MIIKKA SILFVERBERG,
AND KRISTER LINDÉN

University of Helsinki, Finland

ABSTRACT

We demonstrate a finite-state implementation of context-aware
spell checking utilizing an N-gram based part of speech (POS)
tagger to rerank the suggestions from a simple edit-distance based
spell-checker. We demonstrate the benefits of context-aware spell-
checking for English and Finnish and introduce modifications
that are necessary to make traditional N-gram models work for
morphologically more complex languages, such as Finnish.

1 INTRODUCTION

Spell-checking by computer is perhaps one of the oldest and most re-
searched applications in the field of language technology starting from
the mid 20th century [1]. One of the crucial parts of spell-checking—both
from an interactive user-interface point of view and for unsupervised cor-
rection of errors—is the production of spelling suggestions. In this article
we test various finite-state methods for using context and shallow mor-
phological analysis to improve the suggestions generated by traditional
edit distance measures or unigram frequencies such as simple weighted
finite-state dictionaries trained from word form frequencies as in [2].

The spell-checking task can be split into two parts, i.e. detection and
actual correction of the spelling errors. The spelling errors can be de-
tected in text as word forms that are unlikely to belong to the natural
language in question, such as writing ‘cta’ instead of ‘cat’. This form of
spelling errors is commonly called non-word (spelling) errors. Another

154 T. A PIRINEN, M. SILFVERBERG, KRISTER LINDÉN

form of spelling errors is word forms that do not belong to the given
context under certain syntactic or semantic requirements, such as writing
‘their’ instead of ‘there’. This form is correspondingly called real-word
(spelling) errors. The non-word type of spelling errors can easily be de-
tected using a dictionary, whereas the detection of the latter type of errors
typically requires syntactic analysis or probabilistic methods [3]. For the
purpose of this article we do not distinguish between them, as the same
correction methods can be applied to both.

The correction of spelling errors usually means generating a list of
word forms belonging to the language for a user to chose from. The
mechanism for generating correction suggestions for the erroneous word-
forms is an error-model. The purpose of an error-model is to act as a fil-
ter to revert the mistakes the user typing the erroneous word-form has
made. The simplest and most traditional model for making such correc-
tions is the Levenshtein-Damerau edit distance algorithm, attributed ini-
tially to [4] and especially in the context of spell-checking to [1]. The
Levenshtein-Damerau edit distance assumes that spelling errors are one
of insertion, deletion or changing of a single character to another, or
swapping two adjacent characters, which models well the spelling er-
rors caused by an accidental slip of finger on a keyboard. It was origi-
nally discovered that for most languages and spelling errors, this simple
method already covers 80 % of all spelling errors [1]. This model is also
language-independent, ignoring the differences in character repertoires of
a given language. Various other error models have also been developed,
ranging from confusion sets to phonemic folding [5].

In this paper, we evaluate the use of context for further fine-tuning
of the correction suggestions. The context is still not commonly used in
spell-checkers. According to [5] it was lacking in the majority of spell-
checkers and while the situation may have improved slightly for some
commercial office suite products, the main spell-checkers for open source
environments are still primarily context-ignorant, such as hunspell1 which
is widely used in the open source world. For English, the surface word-
form trigrams model has been demonstrated to be reasonably efficient
both for non-word cases [6] and for for real-word cases[7]. As an ad-
ditional way to improve the set of suggestions, we propose to use mor-
phosyntactically relevant analyses in context. In this article, we evaluate
a model with a statistical morphological tagger [8]. The resulting system
is in effect similar as described in [9] for Spanish2.

1 http://hunspell.sf.net

IMPROVING FINITE-STATE SPELL-CHECKER SUGGESTIONS 155

The system described is fully built on freely available tools and data,
available for download and use3. The only exception to this is the training
data for Finnish, since there is no available morphological training data
for Finnish as of yet, the download does not contain the source mate-
rial for training but only the trigram models compiled into binary format
automata.

Furthermore, we test the context-based spelling methods using both
English and Finnish language materials to ensure the applicability of the
method for morphologically different languages. The reason for doing
this is two-fold; firstly the fact that English has rather low morphologi-
cal productivity may make it behave statistically differently from other
languages. On the other hand, English has the largest amount of freely
available text corpora. For other languages, the availability of free cor-
pora, especially annotated material, is often seen as a problem.

The article is laid out as follows: In Section 2, we outline the im-
plementation of a finite-state context-aware spell-checker and describe
the statistical methods used. In Section 3, we introduce the corpora and
dictionaries used for spell-checking and training material as well as the
corpora used for obtaining the spelling errors with context. In Section 4,
we show how the created spelling correctors improve the results and ex-
plain the errors left. In Section 5, we compare our work with other current
systems and enumerate possible improvements for both.

2 METHODS

The spelling correction in this article is performed in several phases: as-
suming misspelled word cta for cat, we first apply the error model to
the already known incorrect string cta to produce candidates for proba-
ble mistypings. For this purpose we use the Damerau-Levenshtein edit-
distance algorithm in finite-state form. When applied to cta we get all
strings with one or two typing mistakes, i.e. ata, bta, . . . , acta, bcta,
. . . , ta, ca, . . . , tca, and the correct cat. This set of strings is simulta-
neously matched against the language model, which will produce a set of
corrections, such as cat, act or car. Since both the error-model and the
language model contain information on likelihoods of errors and words

2 We are grateful for the anonymous reviewer on bringing this previous work on
same methods and similar systems to our knowledge.

3 From the page http://hfst.svn.sourceforge.net/viewvc/
hfst/trunk/cicling-2011-contextspell/

156 T. A PIRINEN, M. SILFVERBERG, KRISTER LINDÉN

respectively, the resulting list will be sorted according to a combination
of the edit distance measure and the probability of the word in a reference
corpus. The rankings based on edit distance alone and the edit distance
combined with word probabilities form our two baseline models.

The context-based models we introduce here use the suggestion list
gained from a contextless spelling-checker and the context of the words
as input to rerank suggestions based on N-gram models. Each of the sug-
gestions is tried against the N-gram models, and the ones with higher
likelihoods will be lifted. For example when correcting the misspelling
of ‘an’ as ‘anx’ in the sentence “this is anx example sentence”, as shown
in the Table 1, we have the surface trigrams {this, is, }, {is, , exam-
ple}, { , example, sentence}, and corresponding analysis trigrams {DET,
VVBZ, }, {VVBZ, , NN}, { , NN, NN}. The suggestions for anx at
edit distance one include ‘ax’, ‘an’ (one deletion), ‘ant’, ‘and’, ‘any’ (one
change) and so on. To rank the possible suggestions, we substitute s3
with the suggestions, and calculate the likelihood of their analyses.

Table 1. Example trigram combinations

thiss1 iss2 s3 examples4 sentences5
DETa1 VVBZa2 a3 NNa4 NNa5

2.1 Weighted Finite-State Interpretation of the Method

In this article we use a finite-state formulation of spell-checking. We as-
sume the standard notation for finite-state algebra and define the language
model as a weighted finite-state automaton assigning a weight to each
correctly spelled word-form of a language, and an error model automa-
ton mapping a misspelled string to a set of corrected strings and their
weights. The probabilistic interpretation of the components is such that
the weighted fsa as a language model assigns weight w(s) to word s cor-
responding to the probability P (s) for the word to be a correct word in
the language. The error model assigns weight w(s : r) to string pair s, r
corresponding to the probability P (s|r) of a user writing word r when
intending to write the word s, and the context model assigns weight
w(s3a3) to word s3 with associated POS tagging a3 corresponding to
the standard HMM estimate P (a3s3) of the analysis being in a 3-gram

IMPROVING FINITE-STATE SPELL-CHECKER SUGGESTIONS 157

context given by equation (1).

P (a3s3) =

5∏
i=3

P (si|ai)P (ai|ai−2, ai−1) (1)

In a weighted finite-state system, the probabilistic data needs to be
converted to the algebra supported by the finite-state weight structure.
In this case we use the tropical semi-ring by transforming the frequencies
into penalty weights with the formula− log f

CS , where f is the frequency
and CS the corpus size in number of tokens. If the language model allows
for words that are not in the dictionary, a maximal weight is assigned to
the unseen word forms that may be in the language model but not in the
training corpus, i.e. any unseen word has a penalty weight of − log 1

CS .
The spelling corrections suggested by these unigram lexicon-based

spell-checkers are initially generated by composing an edit-distance au-
tomaton [10] with an error weight corresponding to the probability of
the error estimated in a corpus, i.e. − log fF

CS+1 , where fF is the fre-
quency of the misspelling in a corpus. This weight is attached to the edit
distance type error. In practice, this typically still means that the correc-
tions are initially ordered primarily by the edit distance of the correction,
and secondarily by the unigram frequency of the word-form in the ref-
erence corpus. This order is implicitly encoded in the weighted paths of
the resulting automaton; to list the corrections we use the n-best paths
algorithm [11]. This ordering is also used as our second baseline.

For a context-based reordering of the corrections, we use the POS
tagging probabilities for the given suggestions. The implementation of
the analysis N-gram probability estimation is similar to the one described
in [8] with the following adaptations for the spelling correction. For the
suggestion which gives the highest ranking, the most likely analysis is se-
lected. The N-gram probability is estimated separately for each spelling
suggestion and then combined with the baseline probability given by the
unigram probability and the edit distance weight. The ideal scaling for the
weights of unigram probabilities, i.e. edit distance probabilities with re-
spect to N-gram probabilities, can be acquired by e.g.g tuning the scaling
parameter on an automatically generated spelling error corpus.

The resulting finite-state system consists of three sets of automata,
i.e. the dictionary for spell-checking, the error-model as described in [2],
and the new N-gram model automata. The automata sizes are given in
Table 2 for reference. The sizes also give an estimate of the memory
usage of the spell-checking system, although the actual memory-usage

158 T. A PIRINEN, M. SILFVERBERG, KRISTER LINDÉN

during correction will rise depending on the actual extent of the search
space during the correction phase.

Table 2. Automata sizes.

Automaton States Transitions Bytes
English

Dictionary 25,330 42,448 1.2 MiB
Error model 1,303 492,232 5.9 MiB
N-gram lexicon 363,053 1,253,315 42 MiB
N-gram sequences 46,517 200,168 4.2 MiB

Finnish
Dictionary 179,035 395,032 16 MiB
Error model 1,863 983,227 12 MiB
N-gram lexicon 70,665 263,298 8.0 MiB
N-gram sequences 3,325 22,418 430 KiB

2.2 English-Specific Finite-State Weighting Methods

The language model for English was created as described in [12]4. It
consists of the word-forms and their probabilities in the corpora. The edit
distance is composed of the standard English alphabet with an estimated
error likelihood of 1 in 1000 words. Similarly for the English N-gram
material, the initial analyses found in the WSJ corpus were used in the
finite-state tagger as such. The scaling factor between the dictionary prob-
ability model and the edit distance model was acquired by estimating the
optimal multipliers using the automatic misspellings and corrections of
a Project Gutenberg Ebook5 Alice’s Adventures in Wonderland. In here
the estimation simply means trying out factors until results are stable and
picking the best one.

2.3 Finnish-Specific Finite-State Weighting Methods

The Finnish language model was based on a readily-available morpho-
logical weighted analyser of Finnish language [13]. We further modified

4 The finite-state formulation of this is informally described on the follow-
ing page: http://blogs.helsinki.fi/tapirine/2011/07/21/
how-to-write-an-hfst-spelling-corrector/

5 http://www.gutenberg.org/cache/epub/11/pg11.txt

IMPROVING FINITE-STATE SPELL-CHECKER SUGGESTIONS 159

the automaton to penalize suggestions with newly created compounds
and derivations by adding a weight greater than the maximum to such
suggestions, i.e. −A log 1

CS+1 , where A is the scaling factor acquired
from the training material. This has nearly the same effect as using a sep-
arate dictionary for suggestions that excludes the heavily weighted forms
without requiring the extra space. Also for Finnish, a scaling factor was
estimated by using automatic misspellings and corrections of a Project
Gutenberg Ebook6 Juha.

In the initial Finnish tagger, there was a relatively large tagset, all
of which did not contain information necessary for the task of spell-
checking, such as discourse particles, which are relatively context-agnos-
tic [14], so we opted to simplify the tagging in these cases. Furthermore,
the tagger used for training produced heuristic readings for unrecognized
word-forms, which we also removed. Finally, we needed to add some ex-
tra penalties to the word forms unknown to the dictionary in the N-gram
model, since this phenomenon was more frequent and diverse for Finnish
than English. The extra penalties were acquired by iterative testing on the
correction material using generated errors.

3 MATERIAL

To train the spell-checker lexicons, word-form probabilities can be ac-
quired from arbitrary running text. By using unigram frequencies, we
can assign all word-forms some initial probabilities in isolation, i.e. with
no spell-checking context. The unigram-trained models we used were ac-
quired from existing spell-checker systems [12, 2], but we briefly describe
the used corpora here as well.

To train the various N-gram models, corpora are required. For the
surface-form training material, it is sufficient to capture running N-grams
in the text. For training the statistical tagger with annotations, we also
require disambiguated readings. Ideally, this means hand-annotated tree
banks or similar gold standard corpora.

The corpora used are summarized in Table 3. The sizes are provided
to make it possible to reconstruct the systems. In practice, they are the
newest available versions of the respective corpora at the time of testing.
In the table, the first row is the training material used for the finite-state
lexicon, i.e. the extracted surface word-forms without the analyses for

6 See the page http://www.gutenberg.org/cache/epub/10863/
pg10863.txt

160 T. A PIRINEN, M. SILFVERBERG, KRISTER LINDÉN

unigram training. The second row is for the analyzed and disambiguated
material for the N-gram based taggers for suggestion improvement. The
third line is the corpora of spelling errors used only for the evaluation of
the systems. As we can see from the figures of English compared with
Finnish, there is a significant difference in freely available corpora such
as Wikipedia. When going further to lesser resourced languages, the num-
ber will drop enough to make such statistical approaches less useful, e.g.
Northern Sámi in [2].

Table 3. Sizes of training and evaluation corpora.

Sentences Tokens Word-forms
English

Unigrams 2,110,728,338 128,457
N-grams 42,164 969,905 39,690
Errors 85 606 217

Finnish
Unigrams 17,479,297 968,996
N-grams 98,699 1,027,514 144,658
Errors 333 4,177 2,762

3.1 English corpora

The English dictionary is based on a frequency weighted word-form list
of the English language as proposed in [12]. The word-forms were col-
lected from the English Wiktionary7, the English EBooks from the project
Gutenberg8 and the British National Corpus9. This frequency weighted
word-list is in effect used as a unigram lexicon for spell-checking.

To train an English morphosyntactic tagger, we use the WSJ cor-
pus. In this corpus each word is annotated by a single tag that encodes
some morphosyntactic information, such as part-of-speech and inflec-
tional form. The total number of tags in this corpus is 77.

The spelling errors of English were acquired by extracting the ones
with context from the Birkbeck error corpus10. In this corpus, the er-
rors are from a variety of sources, including errors made by children

7 http://en.wiktionary.org
8 http://www.gutenberg.org/browse/languages/en
9 http://www.kilgarriff.co.uk/bnc-readme.html

10 http://ota.oucs.ox.ac.uk/headers/0643.xml

IMPROVING FINITE-STATE SPELL-CHECKER SUGGESTIONS 161

and language-learners. For the purpose of this experiment we picked the
subset of errors which had context and also removed the cases of word
joining and splitting to simplify the implementation of parsing and sug-
gestion. When interpreting results it should be noted that many of these
English errors are competence errors while the baseline algorithm used
to model errors here is for typing errors.

3.2 Finnish Corpora

As the Finnish dictionary, we selected the freely available open source
finite-state implementation of a Finnish morphological analyser11. The
analyser had the frequency-weighted word-form list based on Finnish
Wikipedia12 making it in practice an extended unigram lexicon for the
Finnish language. The Finnish morphological analyser, however, is ca-
pable of infinite compounding and derivation, which makes it a notably
different approach to spell checking than the English finite word-form
list.

The Finnish morphosyntactic N-gram model was trained using a mor-
phosyntactically analyzed Finnish Newspaper13. In this format, the an-
notation is based on a sequence of tags, encoding part of speech and
inflectional form. The total number of different tag sequences for this
annotation is 747.

For Finnish spelling errors, we ran the Finnish unigram spell-checker
through Wikipedia, europarl and a corpus of Finnish EBooks from the
project Gutenberg14 to acquire the non-word spelling errors, and picked
at random the errors having frequencies in range 1 to 8 instances; a ma-
jority of higher frequency non-words were actually proper nouns or ne-
ologisms missing from the dictionary. Using all of Wikipedia, europarl
and Gutenberg provides a reasonable variety of both contemporary and
old texts in a wide range of styles.

4 TESTS AND EVALUATION

The evaluation of the correction suggestion quality is described in Ta-
ble 4. The Table 4 contains the precision for the spelling errors. The preci-
sion is measured by ranked suggestions. In the tables, we give the results
11 http://home.gna.org/omorfi
12 http://download.wikipedia.org/fiwiki/
13 http://www.csc.fi/english/research/software/ftc
14 http://www.gutenberg.org/browse/languages/fi

162 T. A PIRINEN, M. SILFVERBERG, KRISTER LINDÉN

separately for ranks 1—5, and then for the accumulated ranks 1—10. The
rows of the table represent different combinations of the N-gram models.
The first row is a baseline score achieved by the weighted edit distance
model alone, and the second is with unigram-weighted dictionary over
edit-distance 2. The last two columns are the traditional word-form N-
gram model and our POS tagger based extension to it.

Table 4. Precision of suggestion algorithms with real spelling errors.

Algorithm 1 2 3 4 5 1—10
English

Edit distance 2 (baseline) 25.9 % 2.4 % 2.4 % 1.2 % 3.5 % 94.1 %
Edit distance 2 w/ Unigrams 28.2 % 5.9 % 29.4 % 3.5% 28.2 % 97.6 %
Edit distance 2 w/ Word N-grams 29.4 % 10.6 % 34.1 % 5.9 % 14.1 % 97.7 %
Edit distance 2 w/ POS N-grams 68.2 % 18.8 % 3.5 % 2.4 % 0.0 % 92.9 %

Finnish
Edit distance 2 (baseline) 66.5 % 8.7 % 4.0 % 4.7 % 1.9 % 89.8 %
Edit distance 2 w/ Unigrams 61.2 % 13.4 % 1.6 % 3.1 % 3.4 % 88.2 %
Edit distance 2 w/ Word N-grams 65.0 % 14.4 % 3.8 % 3.1 % 2.2 % 90.6 %
Edit distance 2 w/ POS N-grams 71.4 % 9.3 % 1.2 % 3.4 % 0.3 % 85.7 %

It would appear that POS N-grams will in both cases give a significant
boost to the results, whereas the word-form N-grams will merely give a
slight increase to the results. In the next subsections we further dissect
the specific changes to results the different approaches give.

4.1 English Error-Analysis

In [12], the authors identify errors that are not solved using simple uni-
gram weights, such as correcting rember to remember instead of member.
Here, our scaled POS N-gram context-model as well as the simpler word
N-gram model, which can bypass the edit distance model weight will se-
lect the correct suggestion. However, when correcting e.g. ment to meant
in stead of went or met the POS based context reranking gives no help as
the POS stays the same.

4.2 Finnish Error-Analysis

In Finnish results we can easily notice that variation within the first po-
sition in the baseline results and reference system is more sporadic. This

IMPROVING FINITE-STATE SPELL-CHECKER SUGGESTIONS 163

can be traced back to the fuzz factor caused by a majority of probabil-
ities falling into the same category in our tests. The same edit-distance
and unigram probability leaves the decision to random factors irrelevant
to this experiment, such as alphabetical ordering that comes from data
structures backing up the program code. The N-gram based reorderings
are the only methods that can tiebreak the results here.

An obvious improvement for Finnish with POS N-grams comes from
correcting agreeing NP’s towards case agreement, such as yhdistetstä to
yhdisteistä (‘of compounds’ PL ELA) instead of the statistically more
common yhdisteestä (‘of compound’ SG ELA). However, as with En-
glish, the POS information does fail to rerank cases where two equally
rare word-forms with the same POS occur at the same edit distance,
which seems to be common with participles, such as correcting varus-
tunut to varautunut in stead of varastanut.

Furthermore we note that the the discourse particles that were dropped
from the POS tagger’s analysis tag set in order to decrease the tag set size
will cause certain word forms in the dictionary to be incorrectly reranked,
such as when correcting the very common misspelling muillekkin into
muillekokin (‘for others as well?’ PL ALL QST KIN) instead of the origi-
nally correct muillekin (‘for others as well’ PL ALL KIN), since the anal-
yses QST (for question enclitic) and KIN (for additive enclitic) are both
dropped from the POS analyses.

4.3 Performance Evaluation

We did not work on optimizing the N-gram analysis and selection, but
we found that the speed of the system is reasonable—even in its current
form, considering that the algorithm is applied only to incorrect words on
the user’s request. Table 5 summarizes the average speed of performing
the experiments in Table 4.

Table 5. The speed of ranking the errors.

Material English Finnish
Algorithm
Unigram (baseline) 10.0 s 51.8 s

399.1 wps 6.2 wps
POS N-grams 377.4 s 1616.2 s

10.6 wps 0.14 wps

164 T. A PIRINEN, M. SILFVERBERG, KRISTER LINDÉN

The performance penalty that is incurred on Finnish spell-checking
but not so much on English comes from the method of determining read-
ings for words unknown to the language model, i.e. from the guessing al-
gorithm. The amount of words unknown to the language model in Finnish
was greater than for English due to the training data sparseness and the
morphological complexity of the language.

5 FUTURE WORK AND DISCUSSION

In this work we recreated the results of basic and context-based spelling
correction for English and implemented same system for Finnish. We
have shown that the POS based N-gram models are suitable for improv-
ing the spelling corrections for both morphologically more complex lan-
guages such as Finnish and for further improving languages with simpler
morphologies like English. To further verify the claim, the method may
still need to be tested on a typologically wider spectrum of languages.

In this article, we used readily available and hand-made error corpora
to test our error correction method. A similar method as the one we use
for error correction should be possible in error detection as well, espe-
cially when detecting real-word errors [7]. In future research, an obvious
development is to integrate the N-gram system as a part of a real spell-
checker system for both detection and correction of spelling errors, as is
already done for the unigram based spell checker demonstrated in [2].

The article discussed only the reranking over basic edit distance error
models, further research should include more careful statistical training
for the error model as well, such as one demonstrated in [15].

6 CONCLUSION

In this paper we have demonstrated the use of finite-state methods for
trigram based generation of spelling suggestions. We have shown that the
basic word-form trigram methods suggested for languages like English
do not seem to be as useful without modification for morphologically
more complex languages like Finnish. Instead a more elaborate N-gram
scheme using POS n-grams is successful for Finnish as well as English.

IMPROVING FINITE-STATE SPELL-CHECKER SUGGESTIONS 165

ACKNOWLEDGEMENTS

We are grateful to Sam Hardwick for making the spell checking software
available and the HFST research group for fruitful discussions. We also
thank the anonymous reviewers for useful suggestions and pointers.

REFERENCES

1. Damerau, F.J.: A technique for computer detection and correction of spelling
errors. Commun. ACM (7) (1964)

2. Pirinen, T.A., Lindén, K.: Finite-state spell-checking with weighted language
and error models. In: Proceedings of the Seventh SaLTMiL workshop on
creation and use of basic lexical resources for less-resourced languagages,
Valletta, Malta (2010) 13–18

3. Mitton, R.: Ordering the suggestions of a spellchecker without using con-
text*. Nat. Lang. Eng. 15(2) (2009) 173–192

4. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions,
and reversals. Soviet Physics—Doklady 10, 707–710. Translated from Dok-
lady Akademii Nauk SSSR (1966) 845–848

5. Kukich, K.: Techniques for automatically correcting words in text. ACM
Comput. Surv. 24(4) (1992) 377–439

6. Church, K., Gale, W.: Probability scoring for spelling correction. Statistics
and Computing (1991) 93–103

7. Mays, E., Damerau, F.J., Mercer, R.L.: Context based spelling correction.
Inf. Process. Manage. 27(5) (1991) 517–522

8. Silfverberg, M., Lindén, K.: Combining statistical models for pos tagging
using finite-state calculus. In: Proceedings of the 18th Conference on Com-
putational Linguistics, NODALIDA 2011. (2011) 183–190

9. Otero, J., Graña, J., Vilares, M.: Contextual spelling correction. In Moreno-
Dı́az, R., Pichler, F., Quesada-Arencibia, A., eds.: EUROCAST. Volume
4739 of Lecture Notes in Computer Science., Springer (2007) 290–296

10. Savary, A.: Typographical nearest-neighbor search in a finite-state lexicon
and its application to spelling correction. In: CIAA ’01: Revised Papers
from the 6th International Conference on Implementation and Application
of Automata, London, UK, Springer-Verlag (2002) 251–260

11. Mohri, M., Riley, M.: An efficient algorithm for the n-best-strings problem
(2002)

12. Norvig, P.: How to write a spelling corrector. Web Page, Visited February
28th 2010, Available http://norvig.com/spell-correct.html
(2010)

13. Pirinen, T.A.: Modularisation of finnish finite-state language description—
towards wide collaboration in open source development of a morphological
analyser. In Pedersen, B.S., Nešpore, G., Inguna Skadi n., eds.: Nodalida
2011. Volume 11 of NEALT Proceedings., NEALT (2011) 299—302

166 T. A PIRINEN, M. SILFVERBERG, KRISTER LINDÉN

14. Hakulinen, A., Vilkuna, M., Korhonen, R., Koivisto, V., Heinonen, T.R.,
Alho, I.: Iso suomen kielioppi (2008) referred on 31.12.2008, available from
http://kaino.kotus.fi/visk.

15. Brill, E., Moore, R.C.: An improved error model for noisy channel spelling
correction. In: ACL ’00: Proceedings of the 38th Annual Meeting on Associ-
ation for Computational Linguistics, Morristown, NJ, USA, Association for
Computational Linguistics (2000) 286–293

TOMMI A. PIRINEN
DEPARTMENT OF MODERN LANGUAGES,

UNIVERSITY OF HELSINKI,
00014, FINLAND

E-MAIL: <TOMMI.PIRINEN@HELSINKI.FI>

MIIKKA SILFVERBERG
DEPARTMENT OF MODERN LANGUAGES,

UNIVERSITY OF HELSINKI,
00014, FINLAND

E-MAIL: <MIIKKA.SILFVERBERG@HELSINKI.FI>

KRISTER LINDÉN
DEPARTMENT OF MODERN LANGUAGES,

UNIVERSITY OF HELSINKI,
00014, FINLAND

E-MAIL: <KRISTER.LINDEN@HELSINKI.FI>

Author Index

Alfared, Ramadan 107
Ambati. Bharat Ram 123
Banerjee, Esha 93
Béchet, Denis 107
Goutam, Rahul 123
Guo, Yuhang 137
Hadke, Sumedh 93
Henrich, Verena 47
Hinrichs, Erhard 47
Isahara, Hitoshi 77
Jha, Girish Nath 93
Kaushik, Shiv 93
Kotani, Katsunori 77

Kumar, Ritesh 93
Li, Sheng 135
Lindén, Krister 155
Liu, Ting 135
Nainwani, Pinkey 93
Nanjo, Hiroaki 77
Perakh, Mark 11
Pirinen, Tommi A. 155
Qin, Bing 135
Silfverberg, Miikka 155
Vodolazova, Tatiana 47
Wang, Shi 63
Yoshimi, Takehiko 77

EDITOR-IN-CHIEF

Alexander Gelbukh, Instituto Politécnico Nacional, Mexico

IJCLA EDITORIAL BOARD

Ajith Abraham, Machine Intelligence Research Labs (MIR Labs), USA
Nicoletta Calzolari, Ist. di Linguistica Computazionale, Italy
Yasunari Harada, Waseda University, Japan
Graeme Hirst, University of Toronto, Canada
Rada Mihalcea, University of North Texas, USA
Ted Pedersen, Univeristy of Minnesota, USA
Grigori Sidorov, Instituto Politécnico Nacional, Mexico
Yorick Wilks, University of Sheffield, UK

GUEST EDITOR OF THIS VOLUME

Yasunari Harada, Waseda University, Japan

REVIEWING COMMITTEE OF THIS VOLUME

Sophia Ananiadou
Bogdan Babych
Ricardo Baeza-Yates
Sivaji Bandyopadhyay
Srinivas Bangalore
Roberto Basili
Anja Belz
Pushpak Bhattacharyya
António Branco
Nicoletta Calzolari
Sandra Carberry
Dan Cristea
Walter Daelemans
Alex Chengyu Fang
Anna Feldman
Alexander Gelbukh
Gregory Grefenstette

Eva Hajicova
Yasunari Harada
Koiti Hasida
Graeme Hirst
Aleš Horák
Nancy Ide
Diana Inkpen
Hitoshi Isahara
Aravind Joshi
Sylvain Kahane
Alma Kharrat
Philipp Koehn
Leila Kosseim
Krister Lindén
Aurelio Lopez
Cerstin Mahlow
Sun Maosong

172

Yuji Matsumoto
Diana McCarthy
Helen Meng
Rada Mihalcea
Ruslan Mitkov
Dunja Mladenic
Marie-Francine Moens
Masaki Murata
Vivi Nastase
Roberto Navigli
Kjetil Nørvåg
Constantin Orăsan
Patrick Saint-Dizier
Maria Teresa Pazienza
Ted Pedersen
Viktor Pekar
Anselmo Peñas
Stelios Piperidis
Irina Prodanof
Aarne Ranta
Victor Raskin
Fuji Ren
German Rigau

Fabio Rinaldi
Horacio Rodriguez
Vasile Rus
Horacio Saggion
Kepa Sarasola
Serge Sharoff
Grigori Sidorov
Thamar Solorio
John Sowa
Ralf Steinberger
Vera Lúcia Strube De Lima
Tomek Strzalkowski
Jun Suzuki
Christoph Tillmann
George Tsatsaronis
Junichi Tsujii
Dan Tufiş
Hans Uszkoreit
Felisa Verdejo
Manuel Vilares Ferro
Haifeng Wang
Bonnie Webber

ADDITIONAL REFEREES FOR THIS VOLUME

Adam Kilgarriff
Adrián Blanco González
Ahmad Emami
Akinori Fujino
Alexandra Balahur
Alvaro Rodrigo
Amitava Das
Ana Garcia-Serrano
Ananthakrishnan Ramanathan
Andrej Gardon
Aniruddha Ghosh
Antoni Oliver
Anup Kumar Kolya

Arantza Casillas-Rubio
Arkaitz Zubiaga
Bing Xiang
Binod Gyawali
Blaz Novak
Charlie Greenbacker
Clarissa Xavier
Colette Joubarne
Csaba Bodor
Daisuke Bekki
Daniel Eisinger
Danilo Croce
David Vilar

173

Delia Rusu
Diana Trandabat
Diman Ghazi
Dipankar Das
Egoitz Laparra
Ekaterina Ovchinnikova
Enrique Amigó
Eugen Ignat
Fazel Keshtkar
Feiyu Xu
Francisco Jose Ribadas Pena
Frederik Vaassen
Gabriela Ferraro
Gabriela Ramirez De La Rosa
Gerold Schneider
Gorka Labaka
Guenter Neumann
Guillermo Garrido
H M Ishrar Hussain
Håkan Burden
Hendra Setiawan
Hiroya Takamura
Hiroyuki Shindo
Ingo Glöckner
Ionut Cristian Pistol
Irina Chugur
Irina Temnikova
Jae-Woong Choe
Janez Brank
Jirka Hana
Jirka Hana
Jordi Atserias
Julian Brooke
K. V. S. Prasad
Katsuhito Sudoh
Kishiko Ueno
Kostas Stefanidis
Kow Kuroda
Krasimir Angelov
Laritza Hernández

Le An Ha
Liliana Barrio-Alvers
Lorand Dali
Luis Otávio De Colla Furquim
Luz Rello
Maite Oronoz Anchordoqui
Maria Kissa
Mario Karlovcec
Martin Scaiano
Masaaki Nagata
Matthias Reimann
Maud Ehrmann
Maya Carrillo
Michael Piotrowski
Miguel Angel Rios Gaona
Miguel Ballesteros
Mihai Alex Moruz
Milagros Fernández Gavilanes
Milos Jakubicek
Miranda Chong
Mitja Trampus
Monica Macoveiciuc
Najeh Hajlaoui
Natalia Konstantinova
Nathan Michalov
Nattiya Kanhabua
Nenad Tomasev
Niyu Ge
Noushin Rezapour Asheghi
Oana Frunza
Oier Lopez De Lacalle
Olga Kolesnikova
Omar Alonso
Paolo Annesi
Peter Ljunglöf
Pinaki Bhaskar
Prokopis Prokopidis
Rainer Winnenburg
Ramona Enache
Raquel Martı́nez

174

Richard Forsyth
Robin Cooper
Rodrigo Agerri
Roser Morante
Ryo Otoguro
Samira Shaikh
Santanu Pal
Shamima Mithun
Sharon Small
Simon Mille
Simone Paolo Ponzetto
Siva Reddy
Somnath Banerjee
Tadej Štajner
Thierry Declerck
Ting Liu

Tom De Smedt
Tommaso Caselli
Tong Wang
Toshiyuki Kanamaru
Tsutomu Hirao
Ulf Hermjakob
Upendra Sapkota
Vanessa Murdock
Victor Darriba
Vı́ctor Peinado
Vı́t Baisa
Vojtech Kovar
Wilker Aziz
Yulia Ledeneva
Yvonne Skalban
Zuzana Neverilova

