
IJCLA VOL. 3, NO. 2, JUL-DEC 2012, PP. 153–166
RECEIVED 03/11/11 ACCEPTED 09/12/11 FINAL 08/06/12

Improving Finite-State Spell-Checker Suggestions
with Part of Speech N-Grams

TOMMI A. PIRINEN, MIIKKA SILFVERBERG,
AND KRISTER LINDÉN

University of Helsinki, Finland

ABSTRACT

We demonstrate a finite-state implementation of context-aware
spell checking utilizing an N-gram based part of speech (POS)
tagger to rerank the suggestions from a simple edit-distance based
spell-checker. We demonstrate the benefits of context-aware spell-
checking for English and Finnish and introduce modifications
that are necessary to make traditional N-gram models work for
morphologically more complex languages, such as Finnish.

1 INTRODUCTION

Spell-checking by computer is perhaps one of the oldest and most re-
searched applications in the field of language technology starting from
the mid 20th century [1]. One of the crucial parts of spell-checking—both
from an interactive user-interface point of view and for unsupervised cor-
rection of errors—is the production of spelling suggestions. In this article
we test various finite-state methods for using context and shallow mor-
phological analysis to improve the suggestions generated by traditional
edit distance measures or unigram frequencies such as simple weighted
finite-state dictionaries trained from word form frequencies as in [2].

The spell-checking task can be split into two parts, i.e. detection and
actual correction of the spelling errors. The spelling errors can be de-
tected in text as word forms that are unlikely to belong to the natural
language in question, such as writing ‘cta’ instead of ‘cat’. This form of
spelling errors is commonly called non-word (spelling) errors. Another

154 T. A PIRINEN, M. SILFVERBERG, KRISTER LINDÉN

form of spelling errors is word forms that do not belong to the given
context under certain syntactic or semantic requirements, such as writing
‘their’ instead of ‘there’. This form is correspondingly called real-word
(spelling) errors. The non-word type of spelling errors can easily be de-
tected using a dictionary, whereas the detection of the latter type of errors
typically requires syntactic analysis or probabilistic methods [3]. For the
purpose of this article we do not distinguish between them, as the same
correction methods can be applied to both.

The correction of spelling errors usually means generating a list of
word forms belonging to the language for a user to chose from. The
mechanism for generating correction suggestions for the erroneous word-
forms is an error-model. The purpose of an error-model is to act as a fil-
ter to revert the mistakes the user typing the erroneous word-form has
made. The simplest and most traditional model for making such correc-
tions is the Levenshtein-Damerau edit distance algorithm, attributed ini-
tially to [4] and especially in the context of spell-checking to [1]. The
Levenshtein-Damerau edit distance assumes that spelling errors are one
of insertion, deletion or changing of a single character to another, or
swapping two adjacent characters, which models well the spelling er-
rors caused by an accidental slip of finger on a keyboard. It was origi-
nally discovered that for most languages and spelling errors, this simple
method already covers 80 % of all spelling errors [1]. This model is also
language-independent, ignoring the differences in character repertoires of
a given language. Various other error models have also been developed,
ranging from confusion sets to phonemic folding [5].

In this paper, we evaluate the use of context for further fine-tuning
of the correction suggestions. The context is still not commonly used in
spell-checkers. According to [5] it was lacking in the majority of spell-
checkers and while the situation may have improved slightly for some
commercial office suite products, the main spell-checkers for open source
environments are still primarily context-ignorant, such as hunspell1 which
is widely used in the open source world. For English, the surface word-
form trigrams model has been demonstrated to be reasonably efficient
both for non-word cases [6] and for for real-word cases[7]. As an ad-
ditional way to improve the set of suggestions, we propose to use mor-
phosyntactically relevant analyses in context. In this article, we evaluate
a model with a statistical morphological tagger [8]. The resulting system
is in effect similar as described in [9] for Spanish2.

1 http://hunspell.sf.net

IMPROVING FINITE-STATE SPELL-CHECKER SUGGESTIONS 155

The system described is fully built on freely available tools and data,
available for download and use3. The only exception to this is the training
data for Finnish, since there is no available morphological training data
for Finnish as of yet, the download does not contain the source mate-
rial for training but only the trigram models compiled into binary format
automata.

Furthermore, we test the context-based spelling methods using both
English and Finnish language materials to ensure the applicability of the
method for morphologically different languages. The reason for doing
this is two-fold; firstly the fact that English has rather low morphologi-
cal productivity may make it behave statistically differently from other
languages. On the other hand, English has the largest amount of freely
available text corpora. For other languages, the availability of free cor-
pora, especially annotated material, is often seen as a problem.

The article is laid out as follows: In Section 2, we outline the im-
plementation of a finite-state context-aware spell-checker and describe
the statistical methods used. In Section 3, we introduce the corpora and
dictionaries used for spell-checking and training material as well as the
corpora used for obtaining the spelling errors with context. In Section 4,
we show how the created spelling correctors improve the results and ex-
plain the errors left. In Section 5, we compare our work with other current
systems and enumerate possible improvements for both.

2 METHODS

The spelling correction in this article is performed in several phases: as-
suming misspelled word cta for cat, we first apply the error model to
the already known incorrect string cta to produce candidates for proba-
ble mistypings. For this purpose we use the Damerau-Levenshtein edit-
distance algorithm in finite-state form. When applied to cta we get all
strings with one or two typing mistakes, i.e. ata, bta, . . . , acta, bcta,
. . . , ta, ca, . . . , tca, and the correct cat. This set of strings is simulta-
neously matched against the language model, which will produce a set of
corrections, such as cat, act or car. Since both the error-model and the
language model contain information on likelihoods of errors and words

2 We are grateful for the anonymous reviewer on bringing this previous work on
same methods and similar systems to our knowledge.

3 From the page http://hfst.svn.sourceforge.net/viewvc/
hfst/trunk/cicling-2011-contextspell/

156 T. A PIRINEN, M. SILFVERBERG, KRISTER LINDÉN

respectively, the resulting list will be sorted according to a combination
of the edit distance measure and the probability of the word in a reference
corpus. The rankings based on edit distance alone and the edit distance
combined with word probabilities form our two baseline models.

The context-based models we introduce here use the suggestion list
gained from a contextless spelling-checker and the context of the words
as input to rerank suggestions based on N-gram models. Each of the sug-
gestions is tried against the N-gram models, and the ones with higher
likelihoods will be lifted. For example when correcting the misspelling
of ‘an’ as ‘anx’ in the sentence “this is anx example sentence”, as shown
in the Table 1, we have the surface trigrams {this, is, }, {is, , exam-
ple}, { , example, sentence}, and corresponding analysis trigrams {DET,
VVBZ, }, {VVBZ, , NN}, { , NN, NN}. The suggestions for anx at
edit distance one include ‘ax’, ‘an’ (one deletion), ‘ant’, ‘and’, ‘any’ (one
change) and so on. To rank the possible suggestions, we substitute s3
with the suggestions, and calculate the likelihood of their analyses.

Table 1. Example trigram combinations

thiss1 iss2 s3 examples4 sentences5
DETa1 VVBZa2 a3 NNa4 NNa5

2.1 Weighted Finite-State Interpretation of the Method

In this article we use a finite-state formulation of spell-checking. We as-
sume the standard notation for finite-state algebra and define the language
model as a weighted finite-state automaton assigning a weight to each
correctly spelled word-form of a language, and an error model automa-
ton mapping a misspelled string to a set of corrected strings and their
weights. The probabilistic interpretation of the components is such that
the weighted fsa as a language model assigns weight w(s) to word s cor-
responding to the probability P (s) for the word to be a correct word in
the language. The error model assigns weight w(s : r) to string pair s, r
corresponding to the probability P (s|r) of a user writing word r when
intending to write the word s, and the context model assigns weight
w(s3a3) to word s3 with associated POS tagging a3 corresponding to
the standard HMM estimate P (a3s3) of the analysis being in a 3-gram

IMPROVING FINITE-STATE SPELL-CHECKER SUGGESTIONS 157

context given by equation (1).

P (a3s3) =

5∏
i=3

P (si|ai)P (ai|ai−2, ai−1) (1)

In a weighted finite-state system, the probabilistic data needs to be
converted to the algebra supported by the finite-state weight structure.
In this case we use the tropical semi-ring by transforming the frequencies
into penalty weights with the formula− log f

CS , where f is the frequency
and CS the corpus size in number of tokens. If the language model allows
for words that are not in the dictionary, a maximal weight is assigned to
the unseen word forms that may be in the language model but not in the
training corpus, i.e. any unseen word has a penalty weight of − log 1

CS .
The spelling corrections suggested by these unigram lexicon-based

spell-checkers are initially generated by composing an edit-distance au-
tomaton [10] with an error weight corresponding to the probability of
the error estimated in a corpus, i.e. − log fF

CS+1 , where fF is the fre-
quency of the misspelling in a corpus. This weight is attached to the edit
distance type error. In practice, this typically still means that the correc-
tions are initially ordered primarily by the edit distance of the correction,
and secondarily by the unigram frequency of the word-form in the ref-
erence corpus. This order is implicitly encoded in the weighted paths of
the resulting automaton; to list the corrections we use the n-best paths
algorithm [11]. This ordering is also used as our second baseline.

For a context-based reordering of the corrections, we use the POS
tagging probabilities for the given suggestions. The implementation of
the analysis N-gram probability estimation is similar to the one described
in [8] with the following adaptations for the spelling correction. For the
suggestion which gives the highest ranking, the most likely analysis is se-
lected. The N-gram probability is estimated separately for each spelling
suggestion and then combined with the baseline probability given by the
unigram probability and the edit distance weight. The ideal scaling for the
weights of unigram probabilities, i.e. edit distance probabilities with re-
spect to N-gram probabilities, can be acquired by e.g.g tuning the scaling
parameter on an automatically generated spelling error corpus.

The resulting finite-state system consists of three sets of automata,
i.e. the dictionary for spell-checking, the error-model as described in [2],
and the new N-gram model automata. The automata sizes are given in
Table 2 for reference. The sizes also give an estimate of the memory
usage of the spell-checking system, although the actual memory-usage

158 T. A PIRINEN, M. SILFVERBERG, KRISTER LINDÉN

during correction will rise depending on the actual extent of the search
space during the correction phase.

Table 2. Automata sizes.

Automaton States Transitions Bytes
English

Dictionary 25,330 42,448 1.2 MiB
Error model 1,303 492,232 5.9 MiB
N-gram lexicon 363,053 1,253,315 42 MiB
N-gram sequences 46,517 200,168 4.2 MiB

Finnish
Dictionary 179,035 395,032 16 MiB
Error model 1,863 983,227 12 MiB
N-gram lexicon 70,665 263,298 8.0 MiB
N-gram sequences 3,325 22,418 430 KiB

2.2 English-Specific Finite-State Weighting Methods

The language model for English was created as described in [12]4. It
consists of the word-forms and their probabilities in the corpora. The edit
distance is composed of the standard English alphabet with an estimated
error likelihood of 1 in 1000 words. Similarly for the English N-gram
material, the initial analyses found in the WSJ corpus were used in the
finite-state tagger as such. The scaling factor between the dictionary prob-
ability model and the edit distance model was acquired by estimating the
optimal multipliers using the automatic misspellings and corrections of
a Project Gutenberg Ebook5 Alice’s Adventures in Wonderland. In here
the estimation simply means trying out factors until results are stable and
picking the best one.

2.3 Finnish-Specific Finite-State Weighting Methods

The Finnish language model was based on a readily-available morpho-
logical weighted analyser of Finnish language [13]. We further modified

4 The finite-state formulation of this is informally described on the follow-
ing page: http://blogs.helsinki.fi/tapirine/2011/07/21/
how-to-write-an-hfst-spelling-corrector/

5 http://www.gutenberg.org/cache/epub/11/pg11.txt

IMPROVING FINITE-STATE SPELL-CHECKER SUGGESTIONS 159

the automaton to penalize suggestions with newly created compounds
and derivations by adding a weight greater than the maximum to such
suggestions, i.e. −A log 1

CS+1 , where A is the scaling factor acquired
from the training material. This has nearly the same effect as using a sep-
arate dictionary for suggestions that excludes the heavily weighted forms
without requiring the extra space. Also for Finnish, a scaling factor was
estimated by using automatic misspellings and corrections of a Project
Gutenberg Ebook6 Juha.

In the initial Finnish tagger, there was a relatively large tagset, all
of which did not contain information necessary for the task of spell-
checking, such as discourse particles, which are relatively context-agnos-
tic [14], so we opted to simplify the tagging in these cases. Furthermore,
the tagger used for training produced heuristic readings for unrecognized
word-forms, which we also removed. Finally, we needed to add some ex-
tra penalties to the word forms unknown to the dictionary in the N-gram
model, since this phenomenon was more frequent and diverse for Finnish
than English. The extra penalties were acquired by iterative testing on the
correction material using generated errors.

3 MATERIAL

To train the spell-checker lexicons, word-form probabilities can be ac-
quired from arbitrary running text. By using unigram frequencies, we
can assign all word-forms some initial probabilities in isolation, i.e. with
no spell-checking context. The unigram-trained models we used were ac-
quired from existing spell-checker systems [12, 2], but we briefly describe
the used corpora here as well.

To train the various N-gram models, corpora are required. For the
surface-form training material, it is sufficient to capture running N-grams
in the text. For training the statistical tagger with annotations, we also
require disambiguated readings. Ideally, this means hand-annotated tree
banks or similar gold standard corpora.

The corpora used are summarized in Table 3. The sizes are provided
to make it possible to reconstruct the systems. In practice, they are the
newest available versions of the respective corpora at the time of testing.
In the table, the first row is the training material used for the finite-state
lexicon, i.e. the extracted surface word-forms without the analyses for

6 See the page http://www.gutenberg.org/cache/epub/10863/
pg10863.txt

160 T. A PIRINEN, M. SILFVERBERG, KRISTER LINDÉN

unigram training. The second row is for the analyzed and disambiguated
material for the N-gram based taggers for suggestion improvement. The
third line is the corpora of spelling errors used only for the evaluation of
the systems. As we can see from the figures of English compared with
Finnish, there is a significant difference in freely available corpora such
as Wikipedia. When going further to lesser resourced languages, the num-
ber will drop enough to make such statistical approaches less useful, e.g.
Northern Sámi in [2].

Table 3. Sizes of training and evaluation corpora.

Sentences Tokens Word-forms
English

Unigrams 2,110,728,338 128,457
N-grams 42,164 969,905 39,690
Errors 85 606 217

Finnish
Unigrams 17,479,297 968,996
N-grams 98,699 1,027,514 144,658
Errors 333 4,177 2,762

3.1 English corpora

The English dictionary is based on a frequency weighted word-form list
of the English language as proposed in [12]. The word-forms were col-
lected from the English Wiktionary7, the English EBooks from the project
Gutenberg8 and the British National Corpus9. This frequency weighted
word-list is in effect used as a unigram lexicon for spell-checking.

To train an English morphosyntactic tagger, we use the WSJ cor-
pus. In this corpus each word is annotated by a single tag that encodes
some morphosyntactic information, such as part-of-speech and inflec-
tional form. The total number of tags in this corpus is 77.

The spelling errors of English were acquired by extracting the ones
with context from the Birkbeck error corpus10. In this corpus, the er-
rors are from a variety of sources, including errors made by children

7 http://en.wiktionary.org
8 http://www.gutenberg.org/browse/languages/en
9 http://www.kilgarriff.co.uk/bnc-readme.html

10 http://ota.oucs.ox.ac.uk/headers/0643.xml

IMPROVING FINITE-STATE SPELL-CHECKER SUGGESTIONS 161

and language-learners. For the purpose of this experiment we picked the
subset of errors which had context and also removed the cases of word
joining and splitting to simplify the implementation of parsing and sug-
gestion. When interpreting results it should be noted that many of these
English errors are competence errors while the baseline algorithm used
to model errors here is for typing errors.

3.2 Finnish Corpora

As the Finnish dictionary, we selected the freely available open source
finite-state implementation of a Finnish morphological analyser11. The
analyser had the frequency-weighted word-form list based on Finnish
Wikipedia12 making it in practice an extended unigram lexicon for the
Finnish language. The Finnish morphological analyser, however, is ca-
pable of infinite compounding and derivation, which makes it a notably
different approach to spell checking than the English finite word-form
list.

The Finnish morphosyntactic N-gram model was trained using a mor-
phosyntactically analyzed Finnish Newspaper13. In this format, the an-
notation is based on a sequence of tags, encoding part of speech and
inflectional form. The total number of different tag sequences for this
annotation is 747.

For Finnish spelling errors, we ran the Finnish unigram spell-checker
through Wikipedia, europarl and a corpus of Finnish EBooks from the
project Gutenberg14 to acquire the non-word spelling errors, and picked
at random the errors having frequencies in range 1 to 8 instances; a ma-
jority of higher frequency non-words were actually proper nouns or ne-
ologisms missing from the dictionary. Using all of Wikipedia, europarl
and Gutenberg provides a reasonable variety of both contemporary and
old texts in a wide range of styles.

4 TESTS AND EVALUATION

The evaluation of the correction suggestion quality is described in Ta-
ble 4. The Table 4 contains the precision for the spelling errors. The preci-
sion is measured by ranked suggestions. In the tables, we give the results
11 http://home.gna.org/omorfi
12 http://download.wikipedia.org/fiwiki/
13 http://www.csc.fi/english/research/software/ftc
14 http://www.gutenberg.org/browse/languages/fi

162 T. A PIRINEN, M. SILFVERBERG, KRISTER LINDÉN

separately for ranks 1—5, and then for the accumulated ranks 1—10. The
rows of the table represent different combinations of the N-gram models.
The first row is a baseline score achieved by the weighted edit distance
model alone, and the second is with unigram-weighted dictionary over
edit-distance 2. The last two columns are the traditional word-form N-
gram model and our POS tagger based extension to it.

Table 4. Precision of suggestion algorithms with real spelling errors.

Algorithm 1 2 3 4 5 1—10
English

Edit distance 2 (baseline) 25.9 % 2.4 % 2.4 % 1.2 % 3.5 % 94.1 %
Edit distance 2 w/ Unigrams 28.2 % 5.9 % 29.4 % 3.5% 28.2 % 97.6 %
Edit distance 2 w/ Word N-grams 29.4 % 10.6 % 34.1 % 5.9 % 14.1 % 97.7 %
Edit distance 2 w/ POS N-grams 68.2 % 18.8 % 3.5 % 2.4 % 0.0 % 92.9 %

Finnish
Edit distance 2 (baseline) 66.5 % 8.7 % 4.0 % 4.7 % 1.9 % 89.8 %
Edit distance 2 w/ Unigrams 61.2 % 13.4 % 1.6 % 3.1 % 3.4 % 88.2 %
Edit distance 2 w/ Word N-grams 65.0 % 14.4 % 3.8 % 3.1 % 2.2 % 90.6 %
Edit distance 2 w/ POS N-grams 71.4 % 9.3 % 1.2 % 3.4 % 0.3 % 85.7 %

It would appear that POS N-grams will in both cases give a significant
boost to the results, whereas the word-form N-grams will merely give a
slight increase to the results. In the next subsections we further dissect
the specific changes to results the different approaches give.

4.1 English Error-Analysis

In [12], the authors identify errors that are not solved using simple uni-
gram weights, such as correcting rember to remember instead of member.
Here, our scaled POS N-gram context-model as well as the simpler word
N-gram model, which can bypass the edit distance model weight will se-
lect the correct suggestion. However, when correcting e.g. ment to meant
in stead of went or met the POS based context reranking gives no help as
the POS stays the same.

4.2 Finnish Error-Analysis

In Finnish results we can easily notice that variation within the first po-
sition in the baseline results and reference system is more sporadic. This

IMPROVING FINITE-STATE SPELL-CHECKER SUGGESTIONS 163

can be traced back to the fuzz factor caused by a majority of probabil-
ities falling into the same category in our tests. The same edit-distance
and unigram probability leaves the decision to random factors irrelevant
to this experiment, such as alphabetical ordering that comes from data
structures backing up the program code. The N-gram based reorderings
are the only methods that can tiebreak the results here.

An obvious improvement for Finnish with POS N-grams comes from
correcting agreeing NP’s towards case agreement, such as yhdistetstä to
yhdisteistä (‘of compounds’ PL ELA) instead of the statistically more
common yhdisteestä (‘of compound’ SG ELA). However, as with En-
glish, the POS information does fail to rerank cases where two equally
rare word-forms with the same POS occur at the same edit distance,
which seems to be common with participles, such as correcting varus-
tunut to varautunut in stead of varastanut.

Furthermore we note that the the discourse particles that were dropped
from the POS tagger’s analysis tag set in order to decrease the tag set size
will cause certain word forms in the dictionary to be incorrectly reranked,
such as when correcting the very common misspelling muillekkin into
muillekokin (‘for others as well?’ PL ALL QST KIN) instead of the origi-
nally correct muillekin (‘for others as well’ PL ALL KIN), since the anal-
yses QST (for question enclitic) and KIN (for additive enclitic) are both
dropped from the POS analyses.

4.3 Performance Evaluation

We did not work on optimizing the N-gram analysis and selection, but
we found that the speed of the system is reasonable—even in its current
form, considering that the algorithm is applied only to incorrect words on
the user’s request. Table 5 summarizes the average speed of performing
the experiments in Table 4.

Table 5. The speed of ranking the errors.

Material English Finnish
Algorithm
Unigram (baseline) 10.0 s 51.8 s

399.1 wps 6.2 wps
POS N-grams 377.4 s 1616.2 s

10.6 wps 0.14 wps

164 T. A PIRINEN, M. SILFVERBERG, KRISTER LINDÉN

The performance penalty that is incurred on Finnish spell-checking
but not so much on English comes from the method of determining read-
ings for words unknown to the language model, i.e. from the guessing al-
gorithm. The amount of words unknown to the language model in Finnish
was greater than for English due to the training data sparseness and the
morphological complexity of the language.

5 FUTURE WORK AND DISCUSSION

In this work we recreated the results of basic and context-based spelling
correction for English and implemented same system for Finnish. We
have shown that the POS based N-gram models are suitable for improv-
ing the spelling corrections for both morphologically more complex lan-
guages such as Finnish and for further improving languages with simpler
morphologies like English. To further verify the claim, the method may
still need to be tested on a typologically wider spectrum of languages.

In this article, we used readily available and hand-made error corpora
to test our error correction method. A similar method as the one we use
for error correction should be possible in error detection as well, espe-
cially when detecting real-word errors [7]. In future research, an obvious
development is to integrate the N-gram system as a part of a real spell-
checker system for both detection and correction of spelling errors, as is
already done for the unigram based spell checker demonstrated in [2].

The article discussed only the reranking over basic edit distance error
models, further research should include more careful statistical training
for the error model as well, such as one demonstrated in [15].

6 CONCLUSION

In this paper we have demonstrated the use of finite-state methods for
trigram based generation of spelling suggestions. We have shown that the
basic word-form trigram methods suggested for languages like English
do not seem to be as useful without modification for morphologically
more complex languages like Finnish. Instead a more elaborate N-gram
scheme using POS n-grams is successful for Finnish as well as English.

IMPROVING FINITE-STATE SPELL-CHECKER SUGGESTIONS 165

ACKNOWLEDGEMENTS

We are grateful to Sam Hardwick for making the spell checking software
available and the HFST research group for fruitful discussions. We also
thank the anonymous reviewers for useful suggestions and pointers.

REFERENCES

1. Damerau, F.J.: A technique for computer detection and correction of spelling
errors. Commun. ACM (7) (1964)

2. Pirinen, T.A., Lindén, K.: Finite-state spell-checking with weighted language
and error models. In: Proceedings of the Seventh SaLTMiL workshop on
creation and use of basic lexical resources for less-resourced languagages,
Valletta, Malta (2010) 13–18

3. Mitton, R.: Ordering the suggestions of a spellchecker without using con-
text*. Nat. Lang. Eng. 15(2) (2009) 173–192

4. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions,
and reversals. Soviet Physics—Doklady 10, 707–710. Translated from Dok-
lady Akademii Nauk SSSR (1966) 845–848

5. Kukich, K.: Techniques for automatically correcting words in text. ACM
Comput. Surv. 24(4) (1992) 377–439

6. Church, K., Gale, W.: Probability scoring for spelling correction. Statistics
and Computing (1991) 93–103

7. Mays, E., Damerau, F.J., Mercer, R.L.: Context based spelling correction.
Inf. Process. Manage. 27(5) (1991) 517–522

8. Silfverberg, M., Lindén, K.: Combining statistical models for pos tagging
using finite-state calculus. In: Proceedings of the 18th Conference on Com-
putational Linguistics, NODALIDA 2011. (2011) 183–190

9. Otero, J., Graña, J., Vilares, M.: Contextual spelling correction. In Moreno-
Dı́az, R., Pichler, F., Quesada-Arencibia, A., eds.: EUROCAST. Volume
4739 of Lecture Notes in Computer Science., Springer (2007) 290–296

10. Savary, A.: Typographical nearest-neighbor search in a finite-state lexicon
and its application to spelling correction. In: CIAA ’01: Revised Papers
from the 6th International Conference on Implementation and Application
of Automata, London, UK, Springer-Verlag (2002) 251–260

11. Mohri, M., Riley, M.: An efficient algorithm for the n-best-strings problem
(2002)

12. Norvig, P.: How to write a spelling corrector. Web Page, Visited February
28th 2010, Available http://norvig.com/spell-correct.html
(2010)

13. Pirinen, T.A.: Modularisation of finnish finite-state language description—
towards wide collaboration in open source development of a morphological
analyser. In Pedersen, B.S., Nešpore, G., Inguna Skadi n., eds.: Nodalida
2011. Volume 11 of NEALT Proceedings., NEALT (2011) 299—302

166 T. A PIRINEN, M. SILFVERBERG, KRISTER LINDÉN

14. Hakulinen, A., Vilkuna, M., Korhonen, R., Koivisto, V., Heinonen, T.R.,
Alho, I.: Iso suomen kielioppi (2008) referred on 31.12.2008, available from
http://kaino.kotus.fi/visk.

15. Brill, E., Moore, R.C.: An improved error model for noisy channel spelling
correction. In: ACL ’00: Proceedings of the 38th Annual Meeting on Associ-
ation for Computational Linguistics, Morristown, NJ, USA, Association for
Computational Linguistics (2000) 286–293

TOMMI A. PIRINEN
DEPARTMENT OF MODERN LANGUAGES,

UNIVERSITY OF HELSINKI,
00014, FINLAND

E-MAIL: <TOMMI.PIRINEN@HELSINKI.FI>

MIIKKA SILFVERBERG
DEPARTMENT OF MODERN LANGUAGES,

UNIVERSITY OF HELSINKI,
00014, FINLAND

E-MAIL: <MIIKKA.SILFVERBERG@HELSINKI.FI>

KRISTER LINDÉN
DEPARTMENT OF MODERN LANGUAGES,

UNIVERSITY OF HELSINKI,
00014, FINLAND

E-MAIL: <KRISTER.LINDEN@HELSINKI.FI>

