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ABSTRACT 

Serial correlation statistics has been widely used in various 
fields of science, but apparently has not yet been applied to the 
analysis of texts. In this paper a method is offered using 
measurements and computations of certain statistical sums that 
reflect the variability of the letters’ distribution along texts. It 
opened a way for the analysis of texts’ structure not available 
by other means and thus led to the discovery of hidden 
regularities in the structure of semantically meaningful texts, 
including, for example, an “average domain of minimal letters 
variability,” common for all semantically meaningful texts in 
various languages, but absent in meaningless strings of 
symbols. Another revelation was the connection of certain 
serial correlation parameters with Zipf’s law. 
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1 Introduction 

Serial correlation statistics (also referred to as autocorrelation) is 
widely used in such diverse areas as, for example, econometry [1], 
spectroscopy [2], or even in music recording [3], and in many other 
areas. However, to the best of the author’s knowledge, it has not yet 
been applied to the analysis of texts. In this paper a method is described 
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making use of the serial correlation, which in this case will be dubbed 
Letter Serial Correlation (LSC). It turned out to be a rather powerful 
tool leading to the discovery of hitherto unknown features of the texts’s 
intrinsic structure. 

It is reasonable to assume that meaningful texts possess a certain 
degree of order. The entropy of meaningful texts is expected to be 
somewhere between the low entropy of highly ordered meaningless 
strings and the high entropy of chaotic meaningless strings.  

Entropy, though, characterizes the overall level of the disorder in a 
text but does not reveal the specific features of a text’s structure. 
Therefore it is desirable to develop methods for analyzing specific 
forms of order in texts.  

Imagine that we try to decipher a text written in an unknown 
language. First we have to determine whether the string of symbols in 
question is a meaningful text or is gibberish. Information theory is not 
helpful in this case because its tools are indifferent to the semantic 
contents of the text. The method of strings’ analysis developed in the 
Algorithmic Probability/Complexity theory [4, 5, 6], while adding a 
powerful tool to the arsenal of mathematics, linguistics, biology and 
other fields of inquiry, leaves out the problem of distinguishing 
between meaningful texts and gibberish. Recent developments in this 
area [7], while introducing certain markers of noise vs. meaningful 
messages, do not seem suited to deciphering texts in unknown 
languages. 

In this paper a method for unearthing certain specific structural 
properties of texts is suggested. It has revealed hidden regularities in 
meaningful texts’ structures. These regularities happen to be present in 
a wide variety of languages that use alphabetical systems of writing. 
This method uses a statistical approach based on the analysis of the 
variability of symbols’ distribution along the string. It will be referred 
to as the Letter Serial Correlation statistics, or simply LSC. 

2 Basics of the LSC Method 

Imagine a string N symbols long. The symbols can be, for example, 
letters drawn from an alphabet that comprises Z different letters. It can 
be a text in English, say the Song of Hiawatha by Longfellow, wherein 
N = 141,399 and Z = 26; it can be the German text of any of Goethe’s 
novels where Z = 26 and N varies from novel to novel. It can be the 



SERIAL CORRELATION STATISTICS OF WRITTEN TEXTS 

 

 
 

13

Hebrew text of the Book of Genesis, which is N = 78,064 letters long, 
with Z = 22. It can be a computer program written as a string of zeros 
and ones, so Z = 2. It can even be a biological macromolecule wherein 
each “letter” is a specific chemical compound, etc. 

There are three versions of the LSC method.  However, of the three 
versions one turned out to be most informative, therefore in this paper 
only the data obtained by that version are reported. 

When we say that the text’s length is found to be N letters long, this 
number excludes spaces between the words and punctuation marks. We 
divide the text into equal cells, each n letters long. If N is divisible by n, 
then the number k of cells will be k = N / n. If, though, N is not 
divisible by n, then the last cell at the end of the text will be shorter 
than the rest of the cells. If k is the number of the “full” cells, each of 
the same size n, then the total number of cells, including the partial cell 
at the text’s end, will be r = k +1. In such cases the last, partial cell will 
be cast off and not accounted for.  

Let us denote the length of the truncated text, that is the length 
remaining after casting off the partial end cell, expressed in the number 
of letters, as L. Obviously, if N is divisible by n, L = N, and k = r, 
otherwise L = kn < N. 

Let us count how many times each letter of the alphabet appears in 
the entire text, and denote these numbers as Mi ,where the index i takes 
the values between I = 1 (for the first letter of the alphabet) and I = Z 
(for the alphabet’s last letter).  

Let us assign to the cells, remaining in the text after truncation (if 
such was necessary) numbers from j = 1 (starting at the text’s 
beginning) to j = k.  

Denote by Xi,j the number of occurrences of letter xi in the cell 
number j and by Xi,j+1  the number of occurrences of the same letter xi 
in the neighboring cell number j+1 . Consider the expression (Xi,j – 
Xi,j+1)2. Squaring the difference ensures the independence of the 
calculated quantity on whether the letter xi occurs more often in cell  j 
or in cell j + 1.   

Comment. Obviously, each cell contains a n-gram. Therefore, some 
readers may get the impression that we deal here with n-gram statistics. 
In fact, the serial correlation statistics is quite different from a n-gram 
statistics. A couple of simple examples may help to see this difference. 
Let us choose n = 3. Then each cell contains a trigram.  Consider a pair 
of neighboring cells, one containg the trigram [abc] and the other the 
trigram [def]. What if we shuffle the letters in the cells, getting now a 
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pair of cells containing, one the trigram [acb] and the neighboring cell 
containing the trigram [efd]? From the viewpoint of the trigram 
statistics, the trigrams [abc] and [acb], as well as [def] and [efd], are 
different trigrams and should be treated as such as long as the trigram 
statistics is applied. On the other hand, within the serial correlation 
statistics there is no difference between the cells containing either 
trigram [abc] or trigram [acb]. Indeed, the expression (Xi,j – Xi,j+1)

2, 
which is at the core of the letter correlation statistics, does not depend 
on the order of letters within the cells. Letter correlation statistics is 
concerned with the variability of letters along the string and is 
indifferent to the fact that cells contain n-grams.  

Another example of the difference between the approaches of the n-
gram and the serial correlation statistics is as follows:  the n-gram 
statistic is only interested in such n-grams which can happen in the 
explored texts. For example, the trigram [zth] normally does not 
happen in English texts and therefore it is of no interest for n-gram 
statistics. Imagine, though, the following string is found in some text: 
“The word ‘heart’ in German is ‘Herz’. This translation can be found 
in a dictionary.”  Choose n = 3. Then it can happen that one of the cells 
will contain the following combination of symbols: [z’.(space)Th].  
From the viewpoint of the serial correlation, where spaces and 
punctuation marks are ignored, this combination is equivalent to a cell 
containing the trigram [zth], and is a legitimate element of the serial 
correlation statistics. 

Now define the following sum, which is referred to as the Measured 
Letter Serial Correlation (LSC) sum: 
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The first summation in equation (1) is performed over all letters of 
the available alphabet, from I = 1 to I = Z. The second summation is 
over all pairs of neighboring cells, numbered from j = 1 to j = k – 1.  
(Each cell, except for cells number 1 and number k, appears twice in 
the equation, once paired with the preceding cell and once paired with 
the subsequent cell; the number of boundaries between the cells, which 
also is the number of pairs of neighboring cells, is k – 1). 

If measured on a specific text and calculated by equation (1), the 
sum Sm statistically estimates the variability of letter distribution along 
the text, averaged over its length.     
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The interpretation of the behavior of Sm can be facilitated if it is 
compared with the Expected Letter Serial Correlation sum, to be 
denoted Se. For a randomized text Se can be calculated exactly. When 
calculating the expected letter serial correlation sum, a perfectly 
random text must be distinguished from the texts obtained by 
permutations of letters of a meaningful text.  In a perfectly random text 
each letter of the available alphabet has the same probability of 
appearing at any location in the text. On the other hand, in a text 
obtained by a permutation of a meaningful text, the frequency 
distribution of letters is the same as in the original text (the latter to be 
also referred to as the identity permutation). Therefore in the permuted 
texts the probabilities of appearing at a certain location in the text are 
different for each letter.  

For example, in English, German, and Spanish texts the most 
frequent letter is e (which in sufficiently long English texts usually 
occupies about 12 percent of the text). Hence, in a gibberish text 
obtained by permutation of, say, a sufficiently long English text, the 
letter e will also appear at approximately 12 percent of the locations, so 
the probability of that letter appearing at an arbitrary location is about 
0.12. For the least frequent letter, z, the probability in question is only a 
fraction of one percent. On the other hand, in a perfectly random text, 
using the same 26 letter-long alphabet, the probability in question for 
both e and z is the same, about 1 / 26.  

If a certain letter appears M times in the identity permutation, it will 
also appear M times in any permuted version of the text in question. On 
the other hand, this letter, as well as any other letter of the alphabet in 
use, will appear close to N / Z times in a perfectly random text of the 
same length of N letters. 

In view of the above, the calculation of the expected letter serial 
correlation sum must be conducted differently for the texts obtained by 
permutations of a meaningful text and for perfectly random texts. 
However, the pertinent calculation has revealed that the formulae for 
Se, derived for texts randomized by permutation and for a perfectly 
random text, differ only by the factor L / L – 1, where L is the total 
number of letters in the text (truncated when necessary as described 
above). Since the studied texts comprised at least several thousand 
letters each, the above factor was practically equal to 1, so the 
quantitative difference between expected LSC sums calculated for texts 
randomized by permutations of letters of a meaningful texts and the 
sums for perfectly random texts turned out to be negligible.  
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The expected letter serial correlation sum is calculated by the 
following equation (derived in Appendix 1): 
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The summation in equation (2) is performed over all letters of the 
alphabet in use.  

For the texts subjected to the study, both the measured letter serial 
correlation sum (as per equation 1) and the expected letter serial 
correlation sum (calculated by equation 2) are determined for a series 
of values of the cell size n. This results in two sets of data, one 
representing the functional dependence of Sm on n, and the other of Se 
on n. 

These data carry information about the text’s structure insofar as it is 
reflected in the variability of letters distribution along the text.  

In many cases it turns out useful to study letter serial correlation 
utilizing, besides LSC sums, also certain auxiliary quantities. One such 
quantity is what will be called Letter Serial Correlation density. This 
quantity is obtained by dividing the LSC sums by the cell size n. We 
distinguish between the measured LSC density dm, and expected LSC 
density de.  For example, the expected LSC density is calculated as 
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Since LSC densities are obtained from the data on LSC sums, they 
can’t provide information beyond that inherent in the LSC sums. 
However, in certain cases reviewing the data for LSC densities makes it 
easier to interpret the observed data. Furthermore, the use of LSC 
densities revealed the connection between the LSC and Zipf’s law [8], 
as will be shown later in this paper.  

Another auxiliary quantity is what will be called specific letter serial 
correlation sums. This quantity is obtained through dividing the LSC 
sum (either the measured or the expected) by the truncated text’s length 
L. Since in the specific LSC sums, unlike the original LSC sums, the 
possible effects of the difference in the text’s lengths are eliminated, 
the specific sums are useful if texts of various lengths are to be 
compared. 

Equation (2) represents, theoretically, a straight line in coordinates 
Se – n.  At n=1 the expected LSC sum has the value of   



SERIAL CORRELATION STATISTICS OF WRITTEN TEXTS 

 

 
 

17

 ∑
= −

−







 −=
Z

i

i
ie L

ML
M

L
S

1 1

1
12 . (4) 

and theoretically it drops to zero at n = L. In fact, though, the Se – n 
curve is not exactly a straight line, because the truncated length L of a 
text (which is part of the equation in question) is obtained by casting 
off the last, incomplete cell. If the total text’s length N is divisible by n, 
there is no incomplete cell at the text’s end, and L=N. If, though, N is 
not divisible by n, the last, incomplete cell, whose size may vary 
between 0 and n – 1, is cast off, so that the truncated text’s length L 
may vary, depending on the values of N and n, between L = N and L = 
N – (n – 1).  As a result, the actual Se – n curve consists of small steps 
rather than being an exact straight line, as equation (2) implies. 
Fortunately, the steps on the Se – n curve are small (except for very 
large n) and do not mask the overall linear dependence of S on n, as 
theoretically predicted.  

Let us write the theoretical equation for the expected LSC density 
(de = Se / n) in the following form:           

 
n
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where de is expressed by equation (3) and the constants T and Q are as 
follows: 
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Equation (5) represents the theoretical hyperbolic function. In 
logarithmic coordinates, the corresponding theoretical curve is a 
straight line. However, because the truncation of the text’s length, 
described above, varies for different values of n, the actual curve 
deviates from the theoretical straight line. To account for that deviation, 
equation (5) can be modified as follows :    
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where for the theoretical function the exponent q = 1, but for the actual 
experimental “curve” it is slightly different from q = 1. 
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All the equations (2) through (7) have been derived for a 
hypothetical randomized text in which the total number N of letters as 
well as the numbers of appearances of each letter in the text equal these 
numbers in the original meaningful text. However, for the original 
meaningful text itself a theoretical calculation of the LSC sums, LSC 
densities, and specific LSC sums is impossible, because the intrinsic 
structure of such a text is yet unknown. These quantities have to be 
found experimentally.  

The LSC data for meaningful texts have been obtained by applying a 
computer program which counted the total number N of letters in the 
text, as well as Mi – the numbers of occurrences of each letter in the 
text, divided the texts into k cells each of length n, cast off the 
incomplete cell if such happened to appear at the text’s end, thus 
truncating the text’s length to L, and finally calculated the measured 
LSC sum Sm, according to equation (1).  This operation was repeated 
for a series of values of n, the cell’s size. The described operation 
produced a set of values of Sm as a function of n. The program had also 
computed, using eq. (2), the expected LSC sum, Se, for the same set of 
values of n. 

More than 90 letter strings have been studied, including natural 
meaningful texts in various languages (Aramaic, Hebrew, Latin, Greek, 
English, Russian, German, Spanish, Italian, Czech, Finnish, and 
Yiddish).  The LSC data displayed distinctive statistical features, 
qualitatively identical for all meaningful texts, regardless of language, 
topic, style, or authorship. These features were, however, absent in 
meaningless texts, either in artificially constructed, highly ordered 
ones, or in strings of gibberish randomized in various ways.  

3   Experimental Data 

The lengths of the studied texts varied from about 5,000 letters to over 
two million letters. The studied texts included 13 books of the Bible in 
Hebrew, translations of the Book of Genesis into all the listed 
languages except Yiddish, the entire text of the Torah (the Pentateuch) 
both in Hebrew and in Aramaic, the Book of Isaiah in Italian, the entire 
text of the Talmud (which is partly in Hebrew and partly in Aramaic), 
translations of a part of Tolstoy’s novel War and Peace into Hebrew 
and English, the entire text of Melville’s novel Moby Dick in English, 
the United Nation’s Sea Trade Treaty in English, Shakespeare’s 
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Macbeth in English, Longfellow’s Song of Hiawatha in English,  
collections of short (published) stories by the author of this article, one 
set in English and the other in Russian, and the full text of one issue 
(October 16, 1988) of the newspaper Argumenty i Fakty (“Arguments 
and Facts”) in Russian. Besides the listed original texts, LSC 
measurements were also conducted on the same texts from which either 
all vowels or all consonants were removed. Furthermore, experiments 
were conducted with various artificially constructed texts. Among these 
artificial texts were highly ordered texts with precisely known 
structures, for which the LSC sums could be exactly calculated and the 
results of calculations could be compared with the experimentally 
measured quantities, thus testing the understanding both of the 
outcomes of measurements and of the texts’ structure.  

Also among the studied texts were strings with various degrees of 
randomness. Some of them were obtained by computer permutations of 
various elements (paragraphs, verses, words, letters, etc.) of meaningful 
texts. Other randomized texts were the results of a deliberate effort to 
artificially create random gibberish from scratch.  

Finally, LSC statistics was applied to the yet undeciphered medieval 
text known as the Voynich manuscript, written in an unknown language 
and an unknown alphabet. The results of this study are not reported in 
this paper for two reasons.  First, the scope of the obtained data was so 
large that it would require a separate paper of an even larger size than 
this one, and that material is more of a cryptological than of a linguistic 
interest. Secondly, while the results of the study of the Voynich 
manuscript by the LSC technique seemed to be of great interest, as they 
shed light on many hitherto unknown characteristics of the manuscript, 
they had not led to deciphering that mysterious text.  

We can generalize the main results of our study as the following two 
statements: 

1. The behavior of the Letter Serial Correlation sums displays certain 
systematic features, common for all studied texts, regardless of the 
language, topic, gist, authorship, or style. These features, in 
particular, distinguish semantically meaningful texts from 
meaningless strings of characters (thus usually enabling one to 
determine whether a text is meaningful or gibberish even if its 
language and/or the meanings of the alphabetical symbols are 
unknown). 
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Fig. 1. Measured (Sm, “curve” 1) and expected (Se, “curve” 2) LSC sums as 
functions of the cell’s size n for the text of the Book of Genesis in Hebrew. The 
text’s length is 78064 letters.  

2. There are quantitative differences between the parameters of the 
LSC statistics for various languages, topics, authorships, etc.   

In Fig. 1 the data for the expected (Se) and measured (Sm) LSC sums 
are shown for the Hebrew text of “Bereshit” (the Book of Genesis). 
They exemplify the typical shape of such curves for all the studied 
meaningful texts (texts in Finnish appear to be an exception which, 
however, was in fact predicted, as will be discussed later).   

When reviewing plots like that exemplified by Fig. 1, it should be 
realized that the scale for the cell size n on the horizontal axis has 
deliberately been made non-uniform in order to accommodate the data 
for the entire range of n in one graph. As n increases, the segments of 
the n-axis representing the same increase of n become shorter. This 
leads to the increased curving of the Sm– n and Se – n graphs toward the 
n-axis. Were the scale on the n-axis proportional, the Se– n graph would 
very closely follow a straight line, according to the theoretical 
equation (2) while the Sm– n graph would preserve the overall shape 
shown in Fig. 1 but stretch more to the right. It should be noted that in 
all figures the values of n, the cell’s size, expressed as the numbers of 
letters in a cell, are integers, as the number of letters cannot be 
fractional. Hence, the segments of “curves” between the experimental 
points are drawn only to facilitate the revelation of trends, while by 
themselves they have no physical meaning.  
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The LSC “curves” for meaningful texts, regardless of language, 
alphabet, or the particular semantic contents, all reveal several 
characteristic points which are as follows:  

At small values of n (typically at n < 3) the measured LSC sum is 
usually larger than the expected LSC sum: Sm > Se. As n increases, both 
the expected and the measured LSC sums decrease, but Sm decreases 
faster than Se, so that at some point (to be referred to as Downcross 
point, DCP, which in Fig 1 is between n = 1 and n = 2) the curve for Sm 
crosses the Se curve and Sm becomes smaller than Se. If we continue 
increasing n, both Sm and Se also continue decreasing until Sm reaches a 
minimal value at some point n = n* (to be referred to as the Minimum 
Point, MP) which in Fig. 1 is at n* ≈ 20. At n > n*, the expected LSC 
sum Se continues its gradual decrease, according to the theoretical 
equation (2).  However, for n exceeding n*, the measured LSC sum Sm 
starts increasing.  At some point (to be referred to as the Upcross Point, 
UCP) the now ascending Sm curve again crosses the still descending Se 
curve. In Fig 1 it happens at n ≈ 120. If n is increased further, the Sm 
curve usually reaches a maximum at some point (to be referred as the 
Peak Point, PP). In Fig. 1 it happens at n ≈ 3000. For even larger n, Sm 
drops down. The DCP is absent in Finnish (and presumably in 
Estonian) texts.  

While the “curves” for the measured LSC sums are qualitatively 
identical for all studied languages and types of texts, there are 
quantitative differences between them. First, the characteristic points 
DCP, MP, UCP, and PP appear at different values of n, depending on 
the texts. Second, the depth of the Sm minimum at n* is different for 
various languages and particular texts.  

The variations in the values of n where the DCP point is observed 
are small; for all the studied texts this point occurs between n = 1 and 
n = 3 (except for Finnish and presumably Estonian texts, where DCP is 
absent). The variations, depending on the language or a specific text, of 
n*, at which the MP is observed are more substantial. In all Hebrew and 
Aramaic texts the MP was observed between n* = 21 and n* = 24. In 
European languages (Latin, Greek, English, German, Spanish, Italian, 
Russian, Czech, Yiddish, and Finnish) the MP was observed, 
depending on the specific text, between n* = 30 and n* = 85. If we also 
include the texts obtained by eliminating either all vowels or all 
consonants, the position of the MP happens between n* = 8 and n* = 85.  

It seems interesting to report that in many (but not all) cases the 
value of n* was found to be close to Z, the number of letters in a given 
alphabet. For example, in all Hebrew and Aramaic texts studied the MP 
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was found between n* = 21 and n* = 24 (about 20 texts studied). The 
alphabets of these two languages each consists of 22 letters.  In Czech 
texts the MP was found at about n* = 40 (the Czech alphabet consists of 
41 letters). When all vowels were removed from a Czech text, the 
location of MP shifted to about n* = 28, which is the number of 
consonants in the Czech alphabet. In texts of many European languages 
the MP occurs at n*  between about 25 and 35 (while the sizes of their 
alphabets are close to these numbers as well).  The removal of vowels 
shifts the position of the MP toward lower values, which, again, are 
close to the numbers of consonants in these alphabets.  

On the other hand, in some other cases MP was found at n* 
considerably larger than the size Z of the alphabet. For example, the 
Minimum Point for the English text of the UN Sea Treaty was found at 
n* = 85, which is substantially larger than the size (Z = 26) of the 
English alphabet. In a few other texts in European languages n*  was 
found to be between about 50 and about 70, which also is well above 
the corresponding alphabets’ sizes. Moreover, the units in the equation 
for Sm are not individual cells, but pairs of cells, so the minima on Sm 
graphs correspond to the values of 2n* rather than n*. Therefore, while 
the alphabet’s size has an obvious effect (the longer the alphabet, the 
higher n* is expected to be) it seems reasonable to consider the 
coincidence of n* and the alphabet’s size for some of the studied texts 
as probably accidental. The nature of n* will be interpreted in the 
discussion section.  

The location of the UCP in all Hebrew and Aramaic texts was found 
close to n ≈ 150. In texts written in European languages the UCP was 
found between about n ≈ 400 and n ≈ 600. Of all the characteristic 
points, UCP is the least informative because it reflects little if any of 
the intrinsic properties of the studied text. Indeed, this point is where 
two curves, one for the meaningful text under investigation and the 
other for a hypothetical randomized text, intersect. While the shape of 
the Sm curve is determined by the text’s structure, it has no relation to 
the Se curve, which is for the artificial randomized text, so the structure 
of the studied text has only a remote bearing on where Sm will 
accidentally cross the independent Se curve. 

Finally, the Peak Point was observed between n ≈ 3,000 and 
n ≈ 10,000. As a rule, none of the clearly distinguished characteristic 
point (DCP, MP, UCP, or PP) was observed on the LSC sums’ curves 
for meaningless strings of letters, so the appearance of these points may 
serve as an indicator of the semantic meaningfulness of a text.  
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Fig. 2. The measured (Sm, “curve” 1) and expected (Se, “curve” 2) LSC sums 
for the set of short stories in Russian. The text’s total length is 37000 letters. 

For example, in Fig. 2 the expected and measured LSC sums are 
shown for a text of a set of short stories by the author, published in 
Russian. We see that despite the drastic difference between the 
languages (in Fig. 1 it was Hebrew while in Fig. 2 it was Russian), the 
different text lengths, and the thousands of years between the times of 
creation of the texts in these two cases, both figures display identical 
features in regard to the behavior of the variability of letters distribution 
along the texts. 

In both Fig. 1 and Fig. 2, we see the same characteristic point DCP, 
MP, UCP, and PP, albeit they happen at different values of the cell’s 
size n. A similar picture, with the distinctive points (DCP, MP, UCP, 
and PP) was observed for all meaningful texts in all studied languages 
(except for Finnish and presumably Estonian, where DCP is absent).  

What about randomized texts?  Look at Fig. 3, where both expected 
and measured LSC data are shown for a text obtained via a computer-
performed permutation of the letters of the Hebrew text of Genesis. 
Comparing Fig. 1 with Fig. 3 shows that permutation of letters has 
completely destroyed the regularities observed in the original 
meaningful text. 

Hence the LSC test allows for an immediate recognition of whether 
the text is meaningful in some (even completely unknown) language 
written in any (including the completely unfamiliar) alphabet, or is just 
a meaningless gibberish. 
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Fig. 3. Measured (Sm, “curve” 1) and expected (Se, “curve” 2) LSC sums for a 
text obtained by a random permutation of letters of the Hebrew text of the 
“Bereshit” (the Book of Genesis). Compare to Fig. 1, where the sums are 
shown for the same text in its original, non-permuted form. 

It should be noted that automatic permutation of the letters of a 
meaningful text, although converting it into gibberish, does not 
guarantee its complete randomization. Since the permutation procedure 
is performed randomly, the number of possible outcomes is very large 
(it equals N!). The overwhelming majority of the permuted strings are 
meaningless. However, among the vast multitude of the permuted 
versions of the same original text there is a certain fraction of strings 
that accidentally contain blocks of letters possessing a certain degree of 
order, even including segments of a semantically meaningful text. 

Therefore we cannot expect the LSC data for a particular permuted 
string to coincide with the expected LSC sums calculated by 
equation (2) for a hypothetical randomized text. 

Indeed, as we see in Fig 3, the measured LSC sum for this particular 
permuted version of the text of Genesis is distinct from the expected 
LSC sum calculated by equation (2) for a hypothetical randomized text 
of the same length and with the same letter-frequency distribution. At 
relatively small cell sizes (up to n ≈ 50) the “curve” of the measured 
LSC sum is more or less close to the “curve” for the expected sum. 
This indicates the reasonably high degree of text randomization 
achieved in this particular permuted string by the letter permutation 
procedure. At n>50 the curve for the measured LSC sum deviates from 
the curve for the expected LSC sum, the deviations occurring in a 
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haphazard manner depending on the values of n. Similar data have been 
observed for other versions of the letters strings obtained by random 
permutations of the same original text. In each permuted version the 
specific haphazard deviations of Sm from the curve for Se are of a 
different shape. The haphazard deviations in question indicate the 
presence of blocks of letters with a certain degree of order within the 
overall randomized string, these blocks having different sizes and 
distribution in each permuted string.  If all possible permuted versions 
of the text in question were available to see, there would be among 
them also one permutation identical with the expected “curve” Se vs. n, 
shown in Fig. 1. Moreover, among those permuted texts one will be an 
exact copy of the original non-permuted text (identity permutation).  

What is significant for our study is that the “curves” of the measured 
LSC sums for randomly permuted texts usually lack those typical 
features observed for meaningful texts. We don’t see on the graphs for 
randomly permuted strings (Fig. 3) any of the points (DCP, MP, UCP, 
and PP; see Fig. 1 and Fig. 2) which invariably occur on the LSC 
graphs for meaningful texts. 

Besides the LSC sums, the discrimination between meaningful texts 
and gibberish can also be done by using the LSC densities. In this case 
logarithmic coordinates are convenient as the theoretical log de –log n 
curves for completely randomized strings are straight lines (equations 
5, 6, and 7). 

Fig. 4 exemplifies the expected and measured LSC density curves 
(in partially logarithmic coordinates), in this example for the translation 
of the Book of Genesis into Latin. (For convenience the numbers on the 
abscissa are given for n rather than for log n). 

Comment. The shape of the “curves” in Fig. 4 is a typical example of a 
Zipfian law [8] at work. The original Zipf’s law stated an empirical 
functional relation of the word’s frequency in a text to the same word’s 
“rank” in the order of words’ frequencies.  Subsequently the term 
“Zipf’s’ or Zipfian” law was extended to a wide variety of phenomena; 
see, for example, [9]. In all of its modifications, Zipfian law always 
establishes dependence between two characteristics of the same object. 
In the original Zipf’s law the object was a certain word.  The two 
characteristics were the frequency of that word in a text and the “rank” 
of the same word in the order of frequencies. The data in Fig. 4 present 
a relation between two quantities—one the cell’s size n (expressed as 
the number of letters in the cell) and the other d, which is an artificially 
constructed cumulative property of the entire string.  
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Fig. 4. Logs of the LSC densities: estimated (de, “curve” 1) and measured (dm, 
“curve” 2) for the translation of the Book of Genesis into Latin. 

The cell’s size n seems, at a glance, a property of an individual cell, 
rather than that of the entire string.  Were this true, the curves in Fig. 4 
would not reflect the relation between two properties of the same 
object, so the graphs in Fig. 4 would not be the real Zipfian 
dependencies, but rather look Zipfian-like by accident. In fact, though, 
as the entire body of this work shows, the cell’s size n is a property of 
the entire string. Indeed, as some value of n is chosen, the string 
converts into a collection of k equal cells, each of size n. The value of n 
determines the values of all characteristics relevant to the letter serial 
correlation analysis. 

Moreover, the very value of d is determined by the value of n. 
Hence, both n and d are properties of the entire string, thus justifying 
the interpretation of the curves in Fig. 4 as genuine Zipfian 
dependencies. 

The curve for dm in fig. 4 obviously consists of two parts. One part, 
at n < n*, is practically indistinguishable from the curve for de, which is 
of the expected LSC density. The second part of the curve for dm, at 
n > n*, is clearly different from the curve for de.  Using the least 
squares fit, we found that the entire curve for de as well as both parts of 
the curve for dm, are all well approximated by straight lines. 

.In this particular example, the corresponding equations are as 
follows: for the expected LSC density, de = 1,729,189 n –1.021 
(correlation coefficient is 0.9992); for the measured LSC density at 
n < 22, dm= 1,788,292 n –1.073 (correlation coefficient is 0.99992); for 
n > 22, dm = 1,500,610 n –0.732  (correlation coefficient is 0.99965). 
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.The negative exponents in the above equations all differ slightly 
from 1. As discussed earlier, in the case of the expected LSC densities, 
the deviations of the exponent from the value of 1 (the latter 
corresponds to the theoretical hyperbolic curve) reflect the effect of the 
text’s truncation when the end cell happens to be incomplete and is cast 
off. In case of a measured LSC density when the shape of dm – n 
function cannot be theoretically calculated, the deviation of the 
exponents from unity reflects the difference in the letter-variability 
distribution between meaningful texts and their permuted versions. 

From the above data (which exemplify the similar results obtained 
for a wide variety of texts in 12 languages) it follows that LSC statistics 
may be considered a reliable tool for discriminating between 
meaningful texts, regardless of language and alphabet, on the one hand, 
and gibberish, on the other.   

However, we still need to test whether or not meaningless strings 
(besides those obtained by permutations of letters of meaningful 
originals) can sometimes masquerade as meaningful texts by producing 
LSC data imitating those exemplified in Figures 1 and 2. 

To this end various versions of meaningless strings, those possessing 
a high degree of order as well as those which are highly chaotic, were 
studied. First, the LSC statistics were applied to strings obtained by 
various methods of permutation of the meaningful original text.  

In one version of the procedure, the words within each paragraph of 
a meaningful original text were randomly permuted by a computer 
while the paragraphs themselves stayed in their original places. As long 
as the doubled cell size (2n) is not exceeding the average word length, 
the behavior of LSC sums, as could be expected, remained similar to 
the one observed for meaningful texts. However, as the doubled cell 
size (2n) becomes larger than the average word length, the LSC sums 
for the words-within-paragraphs-permuted strings deviate markedly 
from those for the meaningful texts. 

A similar effect was observed in strings obtained by random 
permutations of the paragraphs of the original meaningful text while 
the words and letters within the paragraphs remained intact. If 
paragraphs are short and have been randomly permuted, the overall text 
becomes in a certain sense meaningless. Since, however, the text within 
the paragraphs remains intact, each paragraph preserves, within its 
confines, the structure of a meaningful text.  

Therefore, although a string obtained via random permutations of the 
paragraphs of a meaningful text (keeping the texts within the 
paragraphs intact) loses its logical consistency and, hence, can be 
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characterized in a certain sense as meaningless, it could be expected 
that for the doubled cell sizes not exceeding the average paragraph 
length the LSC curves for such permuted strings would look similar to 
the case of a meaningful text. Indeed, such a behavior was observed for 
the strings obtained by the described version of permutation. To 
illustrate the described behavior, in Fig. 5 the LSC curves are shown 
for the Hebrew text of the book of Genesis obtained via the described 
permutation of verses without modifying the text within the verses. 

At n < 22, i.e. 2n < 44, when the doubled cell’s size is less than the 
average size of a verse, the measured LSC sum’s curve behaves 
similarly to the curves for meaningful texts: the Downcross Point and 
the Minimum point for this permuted string are observed at about the 
same values on n as for a meaningful text.  

However, at n > n* = 22 the measured LSC sum for the text with 
permuted verses behaves differently from meaningful texts, 
approaching the behavior of fully randomized texts.  

These data indicate that there may be (albeit it seems not very likely) 
two types of order related to the letter-variability distribution along the 
text—a short range order and a long range order. Shuffling paragraphs 
(or verses) destroys the putative long range order but leaves intact the 
short range order, and the shape of curves for the measured LSC sums 
might reflect it.  (This question will be discussed a little later.)  

 

Fig. 5. Measured (Sm, “curve” 1) and expected (Se, “curve” 2) LSC sums as 
functions of the cell’s size n for a text obtained by a random permutation of 
verses in the Hebrew text of the Book of Genesis (without permuting letters or 
words within the verses). The text’s length is 78,064 letters. The scale on the 
abscissa is logarithmic, but for convenience it is marked in the values of n 
rather than of log n. 
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In one more version of permutation, all words of the text were 
randomly permuted by the computer without permuting letters within 
the words.  In this case the curve for the measured LSC sum was 
similar to those for meaningful texts as long as the cell’s doubled size 
2n was less than the average length of a word. However, when 2n 
exceeded the average word length, the measured LSC sum behaved 
differently from the meaningful original, but similar to the curves for 
the texts randomized by letters permutations. 

In another set of control experiments certain artificially created 
meaningless strings, some with highly ordered and others with chaotic 
structures were constructed. 

One such text was formed by repeating letters of the English 
alphabet 3,000 times each (first the letter A was repeated 3,000 times, 
then the letter B, etc.). This string was 63,000 letters long (it contained 
no segments for the last five letters of the English alphabet). This string 
was highly ordered so its entropy was close to zero.  Since the structure 
of that text was precisely known, it was possible to theoretically 
compute its LSC sum and density. The precise formulae for calculating 
the measured LSC sums and densities for that text are shown in 
Appendix 2. While the derivations of these formulae are omitted to 
keep the paper’s size within reasonable limits, the validity of the 
formulae in question follows from the almost perfect coincidence of the 
data obtained experimentally and those calculated using these formulae. 
(Anybody may get the detailed derivation of the formula in question by 
requesting it from the author.) In Fig. 6 the plot of the LSC density vs. 
cell size (in log-log coordinates) is shown for the near-zero-entropy 
string in question. The results of measurements and calculations 
(conducted for the same set of discrete cell sizes) coincided in this case 
so closely that the two curves could not be resolved from each other, so 
the same zigzag-shaped graph in Fig. 6 represents the data for both the 
measurement and calculation. 

This result testifies that we have developed a reasonable 
understanding of the LSC effect and its relation to the text’s structure. 
As Fig. 6 shows, the behavior of the LSC statistics in the described 
near-zero-entropy meaningless string has nothing in common with the 
behavior of the corresponding quantities for meaningful texts 
(illustrated in Fig. 4). 

Another artificial string was formed by sequentially repeating the 
English alphabet 2422 times. The entropy of that meaningless string is 
a little higher than for the previously discussed low entropy texts, but it 



MARK PERAKH 30

is still very low. For this text the shape of the Sm – n curve also turned 
out to be different from the curves for meaningful texts.  

One more artificial meaningless string of low entropy was created by 
first repeating the first half of the English alphabet, i.e. the string 
ABCDEFGHIJKLM, 17 times; to its end a string was concatenated 
which consisted of the letters BCDEGFHIJKLMN repeated 17 times; 
then the letters CDEFGHIJKLMNO, repeated 17 times, followed, etc., 
until the last substring comprising the second half of the alphabet, also 
repeated 17 times, completed the text.  

 

Fig. 6. Dependence of both measured (dm) and calculated (dc) Letter Serial 
Correlation densities on cell size n (in log-log coordinates) for an artificially 
created highly ordered string 63000 letters long. For convenience, the values on 
the abscissa are indicated for n rather than for logarithms of n. The upper cusp 
corresponds to n = m. To the left of the cusp n < m, to the right n > m (in this 
sample m = 3000). 

The procedure was repeated 7 times, so the total length of that text 
was 20111 letters. Again the Sm – n curve for this highly ordered text 
was distinctively different from the Sm – n curves for meaningful texts. 

Finally, one more meaningless text was made up by randomly 
hitting the keys on the computer keyboard, trying to avoid favoring any 
particular letters at the expense of other letters.  Unlike the previously 
discussed artificial texts, which all were substantially ordered and thus 
had low entropy, this string (which was 10,000 letters long) was 
prepared with the intention of yielding a highly randomized string thus 
possessing entropy substantially exceeding that of meaningful texts.  

It is known [10, 11] that actions of humans cannot be effected in a 
genuinely random manner. Despite the strenuous effort to avoid any 
selectivity in hitting the keyboard buttons, a human operator will 
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subconsciously but inevitably hit the keys in a not fully random way. 
As expected, the Sm vs. n curve for the supposedly random string 
obtained as described revealed certain subconscious selectivity which 
resulted in a letter frequency distribution different from a fully random 
string. To a certain extent the letter frequency distribution in the 
artificial, supposedly random text, indeed turned out to be more 
uniform than in meaningful texts. (In a perfectly random text the letter 
frequency distribution is ideally uniform).  However, it was not as 
uniform as it should be in a perfectly random string. Therefore, the Sm – 
n curve for this artificial high-entropy text displays certain features 
resembling the data for meaningful texts (for example, a minimum at a 
certain value n* of a cell size).  Although these features are not as 
clearly evident as they are for meaningful texts, they may cause doubts 
in regard to the distinction between disordered gibberish and 
meaningful text insofar as the LSC statistics is applied. While this 
phenomenon is perhaps of interest for psychology, in our case we 
needed to determine whether or not the LSC statistics enables us to 
distinguish between semantically meaningful strings and disordered 
gibberish of high entropy. 

It was found that the plots of specific LSC sums for meaningful texts 
are more clearly different from those for the artificial high-entropy 
gibberish than are the plots of Sm sums.  Furthermore, the data are 
distinctively different for meaningful texts and for high-entropy 
gibberish if a text is divided into halves and the LSC statistics are 
compared for both halves. In the case of a meaningful text, the exact 
locations of the MP (i.e. the value of n*) as well as the “depth” of the 
minimum typically are different for the two halves of the text. On the 
other hand, in the case of artificial high-entropy gibberish the 
characteristic points for both halves of the text are almost identical.  

As mentioned before, we have also studied texts obtained by 
removing either all vowels or all consonants from the meaningful texts. 
These studies have revealed that the “shrunk” texts composed of either 
only consonants or only vowels preserve all the features of the LSC 
statistics observed for the original, full versions of the same texts.  On 
the curves of the measured LSC sums for “shrunk” texts all 
characteristic points DCP, MP, UCP, And PP,  discussed earlier, are 
clearly seen, as they are on the curves for the full, all-letters versions.  

 (There is a quantitative difference between the LSC sum curves for 
the full, all-letters versions, and for the “shrunk” only-vowels or only-
consonants versions. The removal of all vowels, and even more of all 
consonants, causes a shift of the MP to lower values of n* and also 
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decreases the “depth of minimum” on those curves.) This points to the 
deeply intrinsic character of the LSC statistics’ behavior, which is not 
destroyed even by such a brutal mutilation of texts as the removal of all 
vowels or of all consonants.  

4   Discussion 

A detailed discussion of the entirety of our LSC data (which comprise 
over 300 graphs and scores of tables) cannot be done within the 
confines of a reasonable paper size. Therefore only a brief discussion of 
the most salient points will be offered here. 

First, we will discuss the nature of the Downcross Point (DCP) 
observed on measured LSC curves for meaningful texts. The 
explanation in this case seems to be almost obvious.  Recall that the 
DCP was always observed at the cell’s size between n = 1 and n = 3. In 
other words, at n = 1, i.e. when the cells contain only one letter each, 
the measured LSC sum  Sm for meaningful texts is slightly larger than 
the expected LSC sum Se , calculated for a text obtained by permutation 
of letters of the original meaningful text. This, of course, is expected. 
Indeed, at n = 1 each cell holds just one letter. 

Since the terms in the LSC sum are contributed by pairs of 
neighboring cells, there are only two possibilities. If both neighboring 
cells of size n = 1 happen to contain the same letter, the term 
contributed to the LSC sum by that pair of cells equals zero. If, though, 
the neighboring cells of that size contain different letters, such pair of 
cells contributes to the LSC sum a term of 2 (since each of the differing 
letters in question contributes 1 to the sum; see eq. (1)). 

It is easy to figure out that the maximum value of Sm (for n = 1) is 
observed when no pair of neighboring cells contains the same letter in 
both cells; the sum is in this case Sm = 2(L – 1) where in this case L = 
k. Therefore, the more pairs of neighboring cells of size n = 1 hold the 
same letter, the smaller the LSC sum is. In natural texts doubling of 
letters is rare; the probability of any pair of neighboring cells of size n 
= 1 containing the same letter is less than the probability of them 
holding different letters. 

On the other hand, in a randomized texts all letters are almost 
equally likely to occur in any cell (except of the effect of the letters 
various frequency, mentioned above), so if in cell j there is letter x, the 
probability of the same letter x also appearing in cell (j+1) is almost the 
same as for any other letter, say y, of the alphabet. (Strictly speaking, 
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this assertion is exactly valid only for a perfectly random text, while the 
calculation of the expected sum was conducted for texts randomized by 
letter permutations of the original meaningful text; however, the 
calculation has shown that for not very short texts the quantitative 
difference between the values of the expected LSC sum for perfectly 
random texts and for letter-permuted texts is, in practical terms, utterly 
negligible; therefore the above assertion remains practically valid for 
our data). 

As a result, a randomized text at n=1 usually contains more pairs of 
neighboring cells with the same letter in each than the original 
meaningful text. Hence the LSC sum for a randomized text at n = 1 
includes more terms equal to zero than the corresponding sum for a 
meaningful text. This results in a slightly larger Sm at n = 1 for 
meaningful texts than for randomized strings. At n > 1, when a cell 
contains more than one letter, the LSC sums, both expected and 
measured, decrease. Indeed, if cells contain only 1 letter each, each 
time two neighboring cells hold different letters it means a 100% 
change of a cell’s content from cell to cell. 

If, though, cells contain more than 1 letter each, only a fraction of 
neighboring cells will have the entire set of letters in each cell different 
from its neighbor; some other pairs of cells will have only partially 
different contents, so the change of a cell’s content from cell to cell, on 
the average, will be less than 100% (i.e. the relative letter variability 
decreases for n > 1). 

The LSC sum is larger when the variability of letters distribution is 
larger. Since for n > 1 the relative variability decreases, the LSC sums 
drops. It drops faster for meaningful texts than for randomized ones 
because in the latter this effect is mitigated by the much larger degree 
of the overall randomness of the letters distribution. As a result, the 
descending curve for the gradually decreasing Sm crosses at the DCP 
the curve for the also decreasing, but at a slower pace, Se.  

If the above explanation is correct, certain predictions can be 
suggested. If a certain language’s orthography requires a frequent 
doubling of identical letters, for a meaningful text in such a language 
the measured LSC sum will contain, at n = 1, a slightly larger fraction 
of pairs of neighboring cells both holding the same letter. Such pairs of 
cells will contribute to the LSC sum terms equal to zero, and this will 
result in a decrease of Sm for such a text, making it less than the 
expected LSC sum Se at n=1. Finnish and Estonian orthography require 
a frequent doubling of both consonants and vowels. Therefore, based 
on the above interpretation of the Downcross Point, it could be  
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predicted that for Finnish (and presumably Estonian) texts the 
measured LSC sum Sm at n = 1 would be no larger than the expected 
LSC sum Se, as was observed in the variety of other texts, but, on the 
contrary, would be below the expected LSC sum. This prediction has 
been fully confirmed experimentally for Finnish texts.  

Based on these data one more prediction was made.  Italian 
orthography requires a frequent doubling of consonants but not of 
vowels. Therefore, for regular meaningful Italian texts no 
“abnormality” in the mutual location of Sm and Se curves at n = 1 can be 
expected. Indeed, the LSC curves for Italian texts had the usual 
configuration wherein at n = 1 the measured LSC sum is slightly larger 
than the expected LSC sum. It could be expected, though, that in Italian 
texts stripped of all vowels the frequent doubling of consonants would 
result in the inversion of the Sm and Se curves at n = 1, as was observed 
for Finnish texts. This expectation was also fulfilled.  

The described observations favor our interpretation of the 
Downcross Point. 

Let us now discuss the Minimum Point. The value of the measured 
LSC sum Sm is determined by the variability of the letter distribution 
along the text. Recall that the terms in the Sm sum are calculated for 
pairs of adjacent cells. The more identical letters happen to occur on 
the average within the length of 2n, the less Sm is. Obviously, then, the 
minimum on the Sm – n curve must occur at such cell’s size n*, which 
corresponds to the minimal average variability of the letters 
distribution within a segment of the size 2n*.  

The observation of the MP means the revelation  of what can be 
referred to as an average Domain of Minimal Letter Variability 
(DMLV) whose size is 2n* and which exists in all meaningful texts 
using an alphabetical writing system, regardless of language, style, 
authorship, alphabet, etc. 

While the DMLV is consistently present in all meaningful texts, it is 
usually absent in gibberish, both of the highly ordered and the highly 
randomized kinds. (Although in extremely rare cases a string of 
gibberish may accidentally happen to have a DMLV, this would be an 
exceptional occurrence, while in meaningful texts it is a rule.)  

The statement asserting the consistent existence of a DMLV in all 
meaningful texts (but its usual absence in gibberish) follows directly 
from the observation of a distinctive minimum on the Sm – n curves, i.e. 
it is simply a statement of fact. Its interpretation, although post-factum, 
does not seem very difficult.  
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It seems reasonable to postulate that the size of a DMLV is related to 
the size of a text’s segment wherein a certain topic is covered.  Then it 
can be expected that certain words related to that topic occur within 
that segment more often than on average in the text as a whole. 
Consequently, a certain set of letters is also expected to occur within 
that text’s segment more often than in the rest of the text. This means a 
lower letter variability within the segment in question, which 
contributes to a smaller value of Sm. The size of a DMLV may be 
expected to be connected to the average size of a text’s segments 
covering individual topics. 

Our interpretation jibes well with the observed variations between 
the positions of MP in various texts. For example, the Hebrew and 
Aramaic texts are written in alphabets each containing only consonants, 
with the total of 22 letters in the alphabet.  On the other hand, the most 
common European languages use substantially longer alphabets (for 
example, the English alphabet has 26 letters; the Russian alphabet has 
33 letters, while the Czech alphabet has 41 letters). These variations 
alone necessarily must affect the size of a text’s segment covering a 
certain topic. However, besides the alphabet’s size, the peculiar ways in 
which each language structures sentences enhances the variations in the 
DMLV. Here is a simple illustration. Consider a maxim that came from 
the ancient Hebrew texts but has become part of many ancient and 
modern languages. Let us write that maxim in several languages. Start 
with its original form in Hebrew, which looks like בעיר נביא   to be) אין 
read from right to left). Transliterated into Latin characters, it takes the 
following form: EIN NVI BIRO. Its length is only 10 letters.  

Now let us write the conventional translations of that maxim into 
English, German, Russian, and Ukrainian. English: There is no prophet 
in one’s native town. (31 letters, of which 19 are consonants). German: 
Es gibt kein Prophet in seiner Stadt. (30 letters, of which 19 are 
consonants). Russian (rendered in Latin letters): Net proroka v 
otechestve svoem (25 letters, of which 15 are consonants; the 
combination ch in the Russian alphabet is rendered by one letter). 
Ukrainian: (rendered in Latin letters): Nema proroka u ridnomu misti. 
(25 letters, of which 14 are consonants).  

Obviously, the Hebrew text requires substantially fewer letters to 
cover a certain topic, so the DMLV for Hebrew naturally is shorter, 
than, say, for English or Russian, and the minimum on the Sm “curve” 
for Hebrew texts appears at lower n (usually about 20–24) than, say, for 
English texts (typically somewhere about 70 and even more). The 
unusually large n* = 85 for the UN Sea Trade Treaty also can be 
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interpreted on the same basis: it is written in a heavy legalese; such 
documents are known for a pedantic verbosity, wherein each statement 
is expressed with multiple asides and additional clauses, which makes 
the segment of a text, covering a certain topic, substantially longer than 
in non-legal texts. This shifts n* to larger values than in non-legalese-
written texts. 

A natural unit of a semantic content is a sentence. Therefore it may 
be surmised that the size of a DMLV is somehow related to the average 
length of a sentence. It hardly could be the length of one sentence, 
because if 2n* were about one sentence long, n* would be about half a 
sentence long, and in this case to ensure the minimal letters’ variability, 
two halves of one sentence would need to contain, on the average, 
almost the same set of letters, which can hardly be expected. Therefore 
it seems reasonable to expect that DMLV should comprise several 
sentences, albeit not too many, so that the set of sentences within the 
scope of an average DMLV covers a specific narrow subject.  

To test that hypothesis we have measured the average lengths of 
sentences in a variety of texts and compared them with the values of 
2n* for these texts. 

The value of 2n* varies, depending on languages and specific texts, 
and usually is between 40 and 170 letters. On the other hand, the 
average length of a sentence, depending on texts, was found to be 
between 0.4n* and 1.35n*, the mean value being about 0.8n*. Therefore 
it can be stated that there is in all meaningful texts an average Domain 
of Minimal Letter Variability which is between 1.5 and 4.5 sentences 
long, its average length for a variety of texts being about 2.5 sentences. 
Apparently that is the average length of a text’s segment typically 
covering individual subjects and hence containing a limited variety of 
letters. As the text’s segment becomes longer than, on the average, the 
length of the DMLV, the subject changes, and with it also the words 
used, and hence the letter composition becomes more varied, so the 
measured LSC sum Sm increases above the minimum.  

Finally, let us discuss the peak (PP) on the Sm – n curves for 
meaningful texts. To decipher the nature of that peak special tests have 
been conducted, in which two types of texts were compared. To this 
end a long text would be chosen, for example the text of several 
sequential chapters of Tolstoy’s novel War and Peace in English 
translation.  

The length of the text subjected to the test in one particular case was 
180,000 letters. This text was then divided into 18 equal segments of 
10,000 letters.  The LSC sum was measured for the first segment. Then 
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the text was gradually enlarged by sequentially concatenating 
additional segments of the same size. The LSC sums were measured at 
each step of the text’s gradual enlargement. In one set of tests, at each 
step the added segment was different from the previously concatenated 
one, being the next segment in the sequence constituting the 180,000 
letter-long original text. In another set of tests, at each step the same 
initial segment was repeatedly concatenated to the string, until the total 
text comprised 18 identical parts each 10,000 letters long. This way a 
strong long range order was artificially generated in the tested text, 
while in the first set of tests the long range order, if such existed, was 
limited to that existing in the text naturally.   

Comparing the two described types of a text, it was found that the 
LSC sums behave quite differently in the two texts in question.  These 
data indicated that the natural meaningful texts possess no long range 
order.  As the cell size n increases, each cell encompasses a larger 
chunk of a text. As the length of the text within a cell increases, local 
violations of order accumulate, until no order can be observed any 
longer.  Since the short range order naturally does not exist anymore 
for such large values of n, and the long range does not exist in natural 
meaningful texts anyway, for such large n the text starts behaving 
similar to a randomized one. For the latter, as the behavior of the 
expected sum Se shows, the LSC sum always decreases with the 
increase of n. Hence the Sm – n curve, which is ascending at smaller n, 
now changes to a descending one, typical of randomized texts. 
Therefore the peak on the Sm – n curve corresponds to such cell sizes 
where the LSC type of order in the text completely disappears, and the 
LSC “curve” follows the behavior typical of random texts.  .  

5   Conclusion 

As the data presented here show, the LSC statistics makes it possible in 
many cases to reliably distinguish semantically meaningful texts from 
gibberish, regardless of the alphabet in use, language, style, authorship, 
etc. The LSC statistics have revealed certain hidden features of the 
order intrinsic in meaningful texts, as, for example, the existence in all 
such texts of an average Domain of Minimal Letter Variability.  
Furtermore, a conection was revealed between the LSC statistics and 
Zipf’s law.  



MARK PERAKH 38

The ancient Hebrew and Aramaic texts display exactly the same 
behavior regarding the letters’ variability distribution along the text as 
the text of a Russian newspaper printed in 1988, or as a Shakespeare’s 
play in English, or as a translation of Genesis into Czech.  Languages 
differ in their vocabulary, grammar, idioms, and alphabets, but 
somewhere on a deeper level they all seem to follow the same 
statistical features, which perhaps points to their common origin from a 
single source.   

ACKNOWLEDGEMENTS.  Dr. Brendan McKay of the Australia 
National University, Canberra, Australia, at various periods of time 
participated in this work, including the preliminary discussion of the 
idea of LSC, writing the computer programs, used for performing the 
computation of the LSC data, and running various texts through these 
programs. The author deeply appreciates Dr. McKay’s contribution. 
The author is also thankful to anonimous reviewers for pithy comments 
which served to the paper’s substantial mprovement. 

Appendix 1. Derivation of the Formula for Expected Letter 
Serial Correlation Sum 

Recall that Xi,j denotes the number of occurrences of letter xi in a cell 
number j. Since all cells are of the same length n, we have 

 Var (Xi,j) = Var (Xi, j+1), (A1) 

 E(Xi,j) = E (Xi, j+ 1), (A2) 

where Var(X) is the variance of X and E is the expected value of X. 

Step 1. Variance is calculated [12] as follows : 

 Var (X) = Е (Х2) – [Е (Х)]2, (A3) 

where the first term is the expected square of X and the second term is 
the square of the expected X.  

Consider now the expression Е[(Xi,j  + Xi, j+ 1)]
 2  which is the expected 

square of the sum of the values of X in two sequential cells.  From 
equation (A3) we obtain 

 Е[(Xi,j + Xi, j+1) 2 ] = Var (Xi,j  + Xi,j+ 1) + [E(Xi,j  + Xi,j+1)]
2. (A4) 
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The expected value of a sum equals the sum of the expected values 
of the items it comprises [8]. Then, accounting for equation (A2), we 
obtain from equation (A4): 

 Е[(Xi,j + Xi, j+1)
 2] = Var (Xi,j + Xi, j+1) + 4[E(Xi,j)]

2. (A5) 

Now consider the expression  

 Е[(Xi,j – Xi, j+1)
2] + E[(Xi,j + Xi, j+1)

2. (A6) 

Replacing the expected value of a sum with the sum of expected 
values of its constituent items and accounting for (A2), we obtain from 
(A6) the following set of algebraic transformations: 

      
Е[(Xi,j – Xi, j+1)

2] + Е[(Xi,j + Xi, j+1)
 2] = 

Е[(Xi,j – Xi, j+1)
2 +  (Xi,j + Xi, j+1)

 2] = 

E[(X2
i,j

  + X2
i,j+ 1

 –2Xi,j Xi,j+1+ X2
i,j+ X2

i,j+ 1 + 2 Xi,j Xi, j+1] = 

E[2 X2
i,j+ 2 X2

i, j+1] =E [4 X2
i,j] = 4E[X2

i,j] 

(A7) 

Now subtract (A5) from (A7): 

  [(Xi,j – Xi, j+1)
2] = 4 E [X2

i,j] – 4 [E(Xi,j)]
2 – Var (Xi,j + Xi, j+1) (A8) 

From equation (A3) we can see that the first two terms in the right side 
of equation (A8) equal 4Var (Xi,j). Then 

 Е[(Xi,j – Xi, j+1)
2] = 4 Var (Xi,j) – Var (Xi,j + Xi, j+1) (A9)   

Comment.  If we dealt with perfectly random texts, Xi,j and Xi,j+ 1 would 
be independent random variables. However, we are deriving formulas 
for a text randomized by a permutation of the letters of an original 
meaningful text, so the permuted text is not perfectly random.  Unlike 
for a perfectly random text, the stock of available letters in our case is 
limited to those letters present in the original meaningful text and in the 
same numbers. Therefore if a certain letter x occurs in a cell, this 
decreases the stock of this letter available for the next cell and thus 
diminishes the probability of x’s occurrence in the next cell. Hence 
there is a certain negative correlation between Xi,j and Xi,j+ 1 which 
therefore are not independent variables. In such cases the variance of a 
sum cannot be replaced with the sum of variances of its constituent 
items so the variances of both Xi,j and (Xi,j + Xi, j+ 1) must be calculated 
and inserted into equation (A9) separately. If, though, variables Xi,j  and 
Xi, j+ 1 were independent, the right side of equation (A9) would equal 
2Var (Xi,j). 
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Step 2. We have to choose now the distribution function for the 
quantity Xi,j  within a cell. Our options are limited to the choice between 
the multinomial and hypergeometric distributions [13]. The 
multinomial distribution is applicable to tests with replacement while 
the hypergeometric distribution is applicable to tests without 
replacement. In our case, if a letter, say x, occurs in a cell once, this 
decreases the probability it will occur again in the same (or the next) 
cell, because the stock of letters is limited to those actually found in the 
original meaningful string. Therefore the conditions under which our 
calculation is conducted meet the definition of tests without 
replacement. In other words, we postulate the hypergeometric 
distribution of letters’ frequencies within the cells. (While this choice is 
theoretically well justified, it has a very little significance in practical 
terms. As the pertinent calculation shows, the final formulae of Se differ 
between the cases of a hypergeometric and a multinomial distributions 
only by the factor of L / (L – 1), where L is the truncated (if need be) 
length of the text, expressed as the number of letters. Obviously, except 
for extremely short strings (which are hardly of interest) the above 
factor is so close to unity that the difference between the formulae for 
the two listed distributions is utterly negligible; for the sake of 
theoretical purity we calculate here the expected LSC sum for a 
hypergeometric distribution.) 

For the hypergeometric distribution, the variance is calculated as 
[12]: 

 Var (Xi,j) = (L – m) mp (1 – p) / (L – 1), (A10) 

where m is the sampling size and p = Mi / L.  Recall that Mi is the 
number of occurrences of the letter xi in the entire string and L is the 
truncated (if need be) length of the text expressed as a number of 
letters.  

For the first term in the right side of equation (A9) the sampling size 
m equals the cell size: m = n = L / k.  For the second term on the right 
side of (A9) the sampling size is twice as large: m = 2n = 2L / k. Then 
we can write for the first term on the right side of (A9): 

 4 Var (Xi,j) = 4(L – L / k) (1 – Mi / L) Mi / k (L – 1), 

or, after a simple algebraic transformation 

 4 Var (Xi,j) = 4 Mi (L – Mi) (1 – 1 / k) / k (L – 1). (A11) 

Similarly, for the second term on the right side of (A9) with its 
doubled sampling size we obtain 
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 Var (Xi,j + Xi, j+1) = 2 (1 – 2 / k) Mi (L – Mi) / k (L – 1). (A11a) 

Finally, plugging (A11) and (A11a) into (A9), we find 

 Е[(Xi,j – Xi, j+ 1)
2] = 2 Mi  (L –  Mi) / k (L – 1). (A12) 

To complete our calculation, we have to sum (A12) over all letters 
of the alphabet (from i = 1 to i = Z) and over all pairs of neighboring 
cells (from j = 1 to j = k – 1). Since, however, all cells are of the same 
size, the summation over j can be replaced with a multiplication by the 
value of k – 1 . This results in the formula 

∑
= −

−







 −=
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i
ie L

ML
M

k
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1

.
1

1
12  

Equation (2) in the body of the text is a replica of the above equation 
with one modification: the number k of cells which appears in the 
above equation, is replaced in equation (2) with its expression through 
the cell size n and the string’s truncated length (k = L / n). 

Appendix 2. Formula of LSC Sum for an Artificial Low 
Entropy Text Composed of Repeated Letters 

Consider a string L letters long composed of Z equal segments, each m 
letters long, where Z is the number of letters in the alphabet. Each m-
long segment contains one particular letter, repeated m times. There are 
no two segments containing the same letter. For example, such a string 
can have Z = 26 segments, of which the first one contains m times the 
letter A, the second segment m times the letter B, etc., up to the 
segment number 26 which contains m times the letter Z.  As before, we 
also divide this string into k cells each n letters long, so that 
kn = mZ = L. Obviously the boundaries between cells and those 
between segments generally will not coincide. The value of m is fixed 
for a particular string while the value of n varies as we calculate (or 
measure) the LSC sum. Since the structure of this string is precisely 
known, we can theoretically calculate the LSC sum for that string.   

We have to distinguish between two cases, in one m > n and in the 
other n > m. Introduce the following notations: 

For m > n: m / n = s + v;  
For n > m: n / m = r + w,  
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where s and r are integer parts while v and w are fractional parts of the 
corresponding quotients. 

As long as m > n, the calculated LSC sum is found from the 
following equation (its derivation is freely available to anybody who 
would request it from the author. Its validity is ascertained by the 
almost perfect coincidence of the data obtained via that equation with 
the measured data): 
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For n > m the formula for the LSC (its derivation is also available on 
request) becomes 
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In these equations j* = (Z – 1) / i* and t* = (k – 1) (n – mr) / m; i* is 
either the integer part of the quotient 1 / v (for the case of m > n) or the 
integer part of the quotient 1 / w (for the case of n > m). 

In those cases where either m / n (if m > n) or n / m (if n > m) are 
integers, the above equations convert into much simpler versions. For 
m > n in such cases 

 Sc = 2n2 (Z – 1). (i) 

For n > m in such cases 

 Sc = 2mn (k – 1). (ii) 

For the particular case of n = m both equations (i) and (ii) yield 
identical results. 

The LSC density dc is obtained from all the quoted formulas via the 
division by the cell size n.   

The points between those for the integer values of n, form a zigzag-
shaped curve which has no meaning in itself but shows the trends. 

The uppermost cusp on the curve in Fig. 6, which separates the 
ascending and the descending branches of the graph, corresponds to 
m = n. (The particular curve in fig. 6 relates to a text where m = 3,000, 
and the total length is 63,000 letters). The results of calculations using 
the quoted formulas turned out to be very close to the results of a direct 
measurement of LSC density, so that the calculated and measured 
curves practically coincided. This observation may serve as 
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confirmation that we have developed a reasonable understanding of 
both the structure of texts, insofar as their letters variability distribution 
is in question, and of the working of the LSC statistics.  
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