IJCLA VOL. 3, NO. 2, JUL-DEC 2011, PP. 11-43
RECEIVED 16/09/12 ACCEPTED 18/12/12 FINAL 23/12/12

Serial Correlation Statistics of Written Texts

MARK PERAKH?

California State University Fullerton, USA

ABSTRACT

Serial correlation statistics has been widely usedvarious
fields of science, but apparently has not yet tamplied to the
analysis of texts. In this paper a method is offetesing

measurements and computations of certain statlstizans that
reflect the variability of the letters’ distributioalong texts. It
opened a way for the analysis of texts’ structure ax@ilable

by other means and thus led to the discovery ofldmd
regularities in the structure of semantically mewgful texts,
including, for example, an “average domain of miairtetters

variability,” common for all semantically meaningftexts in

various languages, but absent in meaningless <strimg

symbols. Another revelation was the connection ertam

serial correlation parameters with Zipf's law.

KEYWORDS quantitative linguistics, Zipf law.

1 Introduction

Serial correlation statistics (also referred to agocorrelation) is
widely used in such diverse areas as, for examgtenometry [1],
spectroscopy [2], or even in music recording [3]d an many other
areas. However, to the best of the author’'s knogédedt has not yet
been applied to the analysis of texts. In this papmethod is described

! Mark Perakh passed away soon after submitting ghjger, his last
publication. The text was copy-edited and formattater; errors
inadvertently introduced in this process are resitility of the editor.



12 MARK PERAKH

making use of the serial correlation, which in tbése will be dubbed
Letter Serial CorrelationLSC). It turned out to be a rather powerful
tool leading to the discovery of hitherto unknoweatures of the texts’'s
intrinsic structure.

It is reasonable to assume that meaningful textsqgs a certain
degree of order. The entropy of meaningful textexpected to be
somewhere between the low entropy of highly orderezhningless
strings and the high entropy of chaotic meaningsssgs.

Entropy, though, characterizes the overall levelhef disorder in a
text but does not reveal the specific features dext’'s structure.
Therefore it is desirable to develop methods foalying specific
forms of order in texts.

Imagine that we try to decipher a text written in anknown
language. First we have to determine whether tfiegsbf symbols in
guestion is a meaningful text or is gibberish. tnfation theory is not
helpful in this case because its tools are indifférto the semantic
contents of the text. The method of strings’ arialgeveloped in the
Algorithmic Probability/Complexity theory [4, 5, 6vhile adding a
powerful tool to the arsenal of mathematics, listjus, biology and
other fields of inquiry, leaves out the problem diftinguishing
between meaningful texts and gibberish. Recentldpmeents in this
area [7], while introducing certain markers of moigs. meaningful
messages, do not seem suited to deciphering textsinknown
languages.

In this paper a method for unearthing certain dedtructural
properties of texts is suggested. It has revealddeh regularities in
meaningful texts’ structures. These regularitiespea to be present in
a wide variety of languages that use alphabetigstiesns of writing.
This method uses a statistical approach based ermarnhlysis of the
variability of symbolsdistribution along the stringlt will be referred
to as the Letter Serial Correlation statisticssiomply LSC.

2 Basics of the LSC Method

Imagine a string\N symbols long. The symbols can be, for example,
letters drawn from an alphabet that comprigdafifferent letters. It can
be a text in English, say tt&ong of Hiawathdy Longfellow, wherein
N = 141,399 and Z = 26; it can be the German texnyf of Goethe’s
novels where Z = 26 and N varies from novel to holtecan be the
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Hebrew text of thaBook of Genesjsvhich isN = 78,064 letters long,
with Z = 22. It can be a computer program written as iagwf zeros
and ones, so Z = 2. It can even be a biologicalromaclecule wherein
each “letter” is a specific chemical compound, etc.

There are three versions of the LSC method. Howefehe three
versions one turned out to be most informativerdtoge in this paper
only the data obtained by that version are reported

When we say that the text’s length is found td\bletters long, this
number excludes spaces between the words and jatiociumarks. We
divide the text into equalells, eachn letters long. IN is divisible byn,
then the numbek of cells will bek = N/n. If, though, N is not
divisible by n, then the last cell at the end of the text will Sferter
than the rest of the cells. kfis the number of the “full” cells, each of
the same siza, then the total number of cells, including thetigdcell
at the text’s end, will be=k +1. In such cases the last, partial cell will
be cast off and not accounted for.

Let us denote the length of the truncated textt thahe length
remaining after casting off the partial end cetpressed in the number
of letters, ad.. Obviously, if N is divisible byn, L = N, andk =,
otherwiseL = kn< N.

Let us count how many times each letter of the aheh appears in
the entire text, and denote these numbeid,ashere the index takes
the values betweeln= 1 (for the first letter of the alphabet) ahd Z
(for the alphabet’s last letter).

Let us assign to the cells, remaining in the tdtdraruncation (if
such was necessary) numbers frgn= 1 (starting at the text's
beginning) tg = k.

Denote byX;; the number of occurrences of letterin the cell
numberj and byX;;.;; the number of occurrences of the same legter
in the neighboring cell numbgt1. Consider the expressioiX( —
Xi,,-+1)2. Squaring the difference ensures the independaice¢he
calculated quantity on whether the letkepccurs more often in cell
orincellj+ 1.

Comment. Obviously, each cell contains a n-gram. Therefemme

readers may get the impression that we deal hdtenagram statistics.
In fact, the serial correlation statistics is qudifferent from a n-gram
statistics. A couple of simple examples may helpde this difference.
Let us choose n = 3. Then each cell contains eatrig Consider a pair
of neighboring cells, one containg the trigram [aémed the other the
trigram [def]. What if we shuffle the letters inetltells, getting now a
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pair of cells containing, one the trigram [acb] @hd neighboring cell
containing the trigram [efd]? From the viewpoint dfe trigram
statistics, the trigrams [abc] and [acb], as well[@ef] and [efd], are
different trigrams and should be treated as sudorgs as the trigram
statistics is applied. On the other hand, withia #erial correlation
statistics there is no difference between the cetlataining either
trigram [abc] or trigram [acb]. Indeed, the expiess(X;; — Xi,,-+1)2,
which is at the core of the letter correlationistats, does not depend
on the order of letters within the cells. Letterretation statistics is
concerned with thevariability of letters along the stringand is
indifferent to the fact that cells contain n-grams.

Another example of the difference between the agghres of the n-
gram and the serial correlation statistics is dbv®: the n-gram
statistic is only interested in such n-grams whéem happen in the
explored texts. For example, the trigram [zth] nalign does not
happen in English texts and therefore it is of nteriest for n-gram
statistics. Imagine, though, the following strirggfound in some text:
“The word ‘heart’ in German is ‘Het. This translation can be found
in a dictionary? Choose n = 3. Then it can happen that one otie
will contain the following combination of symbol$z'.(space)Th].
From the viewpoint of the serial correlation, whespaces and
punctuation marks are ignored, this combinatioagsivalent to a cell
containing the trigram [zth], and is a legitimatensent of the serial
correlation statistics.

Now define the following sum, which is referreda®s theMeasured
Letter Serial Correlatior(LSC) sum:

mzikd(xi,j_xi,jﬂ)- (1)

The first summation in equation (1) is performecatmosll letters of
the available alphabet, froin= 1 tol = Z. The second summation is
over allpairs of neighboring cellsnumbered fromj = 1 toj = k — 1.
(Each cell, except for cells number 1 and nunigesppears twice in
the equation, once paired with the preceding aall ance paired with
the subsequent cell; the number of boundaries leetiee cells, which
also is the number gfairs of neighboring cells, ik — 1).

If measured on a specific text and calculated bya&gn (1), the
sum§,, statistically estimates the variability of let@istribution along
the text, averaged over its length.
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The interpretation of the behavior 8f can be facilitated if it is
compared with theExpected Letter Serial Correlation surto be
denotedS.. For a randomized tex& can be calculated exactly. When
calculating the expected letter serial correlatissim, a perfectly
random text must be distinguished from the textdaiobd by
permutations of letters of a meaningful text. Ipeafectly random text
each letter of the available alphabet has the spnobability of
appearing at any location in the text. On the othand, in a text
obtained by a permutation of a meaningful text, thequency
distribution of letters is the same as in the o@agjitext (the latter to be
also referred to as the identity permutation). €fae in the permuted
texts the probabilities of appearing at a certaation in the text are
different for each letter.

For example, in English, German, and Spanish tefés most
frequent letter ise (which in sufficiently long English texts usually
occupies about 12 percent of the text). Hence, igibdoerish text
obtained by permutation of, say, a sufficientlydoBEnglish text, the
lettere will also appear at approximately 12 percent efltications, so
the probability of that letter appearing at an @by location is about
0.12. For the least frequent letter, z, the prdiglin question is only a
fraction of one percent. On the other hand, in idieptly random text,
using the same 26 letter-long alphabet, the prdibaii question for
bothe andzis the same, about 1 / 26.

If a certain letter appeal times in the identity permutation, it will
also appeaM times in any permuted version of the text in go@stOn
the other hand, this letter, as well as any otégted of the alphabet in
use, will appear close td / Z times in a perfectly random text of the
same length ol letters.

In view of the above, the calculation of the expdctetter serial
correlation sum must be conducted differently fa texts obtained by
permutations of a meaningful text and for perfeatindom texts.
However, the pertinent calculation has revealed tihe formulae for
S, derived for texts randomized by permutation and doperfectly
random text, differ only by the factdr/ L — 1, wherelL is the total
number of letters in the text (truncated when nemgsas described
above). Since the studied texts comprised at lsagéral thousand
letters each, the above factor was practically kdoal, so the
guantitative difference between expected LSC suat@itated for texts
randomized by permutations of letters of a meanintdxts and the
sums for perfectly random texts turned out to hgligible.
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The expected letter serial correlation sum is dated by the
following equation (derived in Appendix 1):

— _n c L-M,
Se—Z(l L];Mi T (2)

The summation in equation (2) is performed overeters of the
alphabet in use.

For the texts subjected to the study, both the medsletter serial
correlation sum (as per equation 1) and the expetg#er serial
correlation sum (calculated by equation 2) arerdateed for a series
of values of the cell sizen. This results in two sets of data, one
representing the functional dependenc&pbn n, and the other of,
onn.

These data carry information about the text's stmacinsofar as it is
reflected in the variability of letters distributi@long the text.

In many cases it turns out useful to study letemias correlation
utilizing, besides LSC sums, also certain auxiligmantities. One such
qguantity is what will be calledletter Serial Correlation densityThis
guantity is obtained by dividing the LSC sums bg tell sizen. We
distinguish between the measured LSC derdjtyand expected LSC
densityd.. For example, the expected LSC density is caledlas

_ (1 1\&,, L-M,
de_z{ﬁ LJ;Mi L-1 3

Since LSC densities are obtained from the data $8 kums, they
can't provide information beyond that inherent imetLSC sums.
However, in certain cases reviewing the data fo€ ldénsities makes it
easier to interpret the observed data. Furthermibwe,use of LSC
densities revealed the connection between the L®CZ#pf's law [8],
as will be shown later in this paper.

Another auxiliary quantity is what will be callegecific letter serial
correlation sumsThis quantity is obtained through dividing the@.S
sum (either the measured or the expected) by timedted text’'s length
L. Since in the specific LSC sums, unlike the omddjihSC sums, the
possible effects of the difference in the text’'adths are eliminated,
the specific sums are useful if texts of variouagtes are to be
compared.

Equation (2) represents, theoretically, a stralgi# in coordinates
S —n. At n=1 the expected LSC sum has the value of
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_ _l z L_Mi
_2(1 LJ;Mi 1 4

and theoretically it drops to zero mt= L. In fact, though, th&, — n
curve is not exactly a straight line, because thecated lengtih. of a
text (which is part of the equation in questionpistained by casting
off the last, incomplete cell. If the total text&ngthN is divisible byn,
there is no incomplete cell at the text’'s end, aadl. If, though,N is
not divisible byn, the last, incomplete cell, whose size may vary
between 0 anah — 1, is cast off, sthat the truncated text's length
may vary, depending on the values\bandn, betweerL = N andL =
N —(n—1). As a result, the actugl — ncurve consists of small steps
rather than being an exact straight line, as egoafR?) implies.
Fortunately, the steps on tl&—n curve are small (except for very
largen) and do not mask the overall linear dependenc® of n, as
theoretically predicted.

Let us write the theoretical equation for the expdd SC density
(de =S/ n) in the following form:

d=d +7=2 (5)
n

whered, is expressed by equation (3) and the consfarisdQ are as
follows:

23 L-M;
TEIEM T ©)
Z L-M,
Q= ZZ_QM = @)

Equation (5) represents the theoretical hyperbdlinction. In
logarithmic coordinates, the corresponding theoatticurve is a
straight line. However, because the truncation haf text's length,
described above, varies for different valuesnpfthe actual curve
deviates from the theoretical straight line. Tocact for that deviation,
equation (5) can be modified as follows :

d, =d, ~T=0lt-T, (8)
nq

where for the theoretical function the expongnt 1, but for the actual
experimental “curve” it is slightly different froiop= 1.
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All the equations (2) through (7) have been derivied a
hypotheticalrandomizedext in which the total numbey of letters as
well as the numbers of appearances of each lettheitext equal these
numbers in the original meaningful text. Howevesr the original
meaningful text itself a theoretical calculationtbé LSC sums, LSC
densities, and specific LSC sums is impossibleabse the intrinsic
structure of such a text is yet unknown. These fities) have to be
found experimentally.

The LSC data for meaningful texts have been ohtdlneapplying a
computer program which counted the total numiesf letters in the
text, as well asM; — the numbers of occurrences of each letter in the
text, divided the texts intk cells each of lengtm, cast off the
incomplete cell if such happened to appear at &é'st end, thus
truncating the text's length th, and finally calculated the measured
LSC sumS,, according to equation (1). This operation waseated
for a series of values ai, the cell's size.The described operation
produced a set of values §f as a function ofi. The program had also
computed, using eq. (2), the expected LSC sfyrfor the same set of
values ofn.

More than 90 letter strings have been studied,uding natural
meaningful texts in various languages (Aramaic, ideh Latin, Greek,
English, Russian, German, Spanish, Italian, Cze€imnish, and
Yiddish). The LSC data displayed distinctive stital features,
qualitatively identical for all meaningful textggardless of language,
topic, style, or authorship. These features wemydver, absent in
meaningless texts, either in artificially constedt highly ordered
ones, or in strings of gibberish randomized inwasiways.

3 Experimental Data

The lengths of the studied texts varied from al&n000 letters to over
two million letters. The studied texts included H@ks of the Bible in
Hebrew, translations of the Book of Gene&do all the listed
languagesexcept Yiddish, the entire text of the Torah (Hentateuch)
both in Hebrew and in Aramaic, the Book of Isaialitalian, the entire
text of the Talmud (which is partly in Hebrew anarfy in Aramaic),
translations of a part of Tolstoy’'s nowalar and Peacénto Hebrew
and English, the entire text of Melville’s novdloby Dickin English,
the United Nation's Sea Trade Treaty in English,al&speare’s
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Macbeth in English, Longfellow’'s Song of Hiawathain English,
collections of short (published) stories by thehautof this article, one
set in English and the other in Russian, and thietdut of one issue
(October 16, 1988) of the newspapgegumenty i Fakty(“*Arguments
and Facts”) in Russian. Besides the listed origitexts, LSC
measurements were also conducted on the samdr@xtsvhich either
all vowels or all consonants were removed. Furtleemexperiments
were conducted with various artificially construttexts. Among these
artificial texts were highly ordered texts with pisely known
structures, for which the LSC sums could be examdlgulated and the
results of calculations could be compared with theperimentally
measured quantities, thus testing the understandioth of the
outcomes of measurements and of the texts’ streictur

Also among the studied texts were strings with auzgidegrees of
randomness. Some of them were obtained by compaternutations of
various elements (paragraphs, verses, words,detttr.) of meaningful
texts. Other randomized texts were the results déldberate effort to
artificially create random gibberish from scratch.

Finally, LSC statistics was applied to the yet wideered medieval
text known as the Voynich manuscript, written inusrknown language
and an unknown alphabet. The results of this sardynot reported in
this paper for two reasons. First, the scope efdibtained data was so
large that it would require a separate paper ofva@n larger size than
this one, and that material is more of a cryptaiabthan of a linguistic
interest. Secondly, while the results of the stufythe Voynich
manuscript by the LSC technique seemed to be at gneerest, as they
shed light on many hitherto unknown characteristicthe manuscript,
they had not led to deciphering that mysterious tex

We can generalize the main results of our studh@gollowing two
statements:

1. The behavior of the Letter Serial Correlation sudisplays certain
systematic features, common for all studied tendgardless of the
language, topic, gist, authorship, or style. Thdeatures, in
particular, distinguish semantically meaningful ttex from
meaningless strings of characters (thus usuallyblemga one to
determine whether a text is meaningful or gibbemstken if its
language and/or the meanings of the alphabeticaibels are
unknown).
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Fig. 1. Measured %, “curve” 1) and expectedS{ “curve” 2) LSC sums as
functions of the cell’s size n for the text of tBeok of Genesis in Hebrew. The
text’s length is 78064 letters.

2. There are quantitative differences between themeters of the
LSC statistics for various languages, topics, austtips, etc.

In Fig. 1 the data for the expected)(8&nd measured {$LSC sums
are shown for the Hebrew text of “Bereshit” (theoRoof Genesis).
They exemplify the typical shape of such curves dbirthe studied
meaningful texts (texts in Finnish appear to beeaoeption which,
however, was in fact predicted, as will be discddaer).

When reviewing plots like that exemplified by Fi. it should be
realized that the scale for the cell sizeon the horizontal axis has
deliberately been made non-uniform in order to auoodate the data
for the entire range af in one graph. As increases, the segments of
the n-axis representing the same increasendfecome shorter. This
leads to the increased curving of e n andS.— n graphs toward the
n-axis. Were the scalen then-axis proportional, th&~ ngraph would
very closely follow a straight line, according tdet theoretical
equation (2) while thes,— n graph would preserve the overall shape
shown in Fig. 1 but stretch more to the right.Hbsld be noted that in
all figures the values af, the cell's size, expressed as the numbers of
letters in a cell, are integers, as the number ettieds cannot be
fractional. Hence, the segments of “curves” betwienexperimental
points are drawn only to facilitate the revelatiohtrends, while by
themselves they have no physical meaning.
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The LSC “curves” for meaningful texts, regardledslanguage,
alphabet, or the particular semantic contents, relleal several
characteristic points which are as follows:

At small values oh (typically atn < 3) the measured LSC sum is
usually larger than the expected LSC s@pn> S.. Asn increases, both
the expected and the measured LSC sums decreds8, Hacreases
faster thanS,, so that at some point (to be referred to as Dowssc
point, DCP, which in Fig 1 is betwe@r= 1 andn = 2) the curve fog,
crosses thé&, curve andS, becomes smaller tha®. If we continue
increasingn, bothS,, andS; also continue decreasing untj, &aches a
minimal value at some poimt = n* (to be referred to as thdinimum
Point, MP) which in Fig. 1 is ah’ =~ 20.At n > n’, the expected LSC
sum & continues its gradual decrease, according to teerdtical
equation (2). However, far exceedingn’, the measured LSC sum, S
starts increasing. At some point (to be referceds thdJpcross Point
UCP) the now ascendirfg, curve again crosses the still descending
curve. In Fig 1 it happens at= 120. If n is increased further, thg,
curve usually reaches a maximum at some point toeferred as the
Peak PointPP). In Fig. 1 it happens atc 3000. For even larger, S,
drops down. The DCP is absent in Finnish (and mpnafly in
Estonian) texts.

While the “curves” for the measured LSC sums aralitatively
identical for all studied languages and types oftste there are
guantitative differences between them. First, tharacteristic points
DCP, MP, UCP, and PP appear at different values diepending on
the texts. Second, theepth of the $ minimumatn’ is different for
various languages and particular texts.

The variations in the values afwhere the DCP point is observed
are small; for all the studied texts this pointuscbetweem = 1 and
n = 3 (except for Finnish and presumably Estoniatstevhere DCP is
absent). The variations, depending on the langoagespecific text, of
n’, at which the MP is observed are more substaitialll Hebrew and
Aramaic texts the MP was observed betwaes 21 andn’ = 24. In
European languages (Latin, Greek, English, GerrBaanish, Italian,
Russian, Czech, Yiddish, and Finnish) the MP wasenled,
depending on the specific text, betweer 30 andn’ = 85. If we also
include the texts obtained by eliminating eithelr awels or all
consonants, the position of the MP happens betweer8 andn’ = 85.

It seems interesting to report that in many (but @i§) cases the
value ofn” was found to be close # the number of letters in a given
alphabet. For example, in all Hebrew and Aramaitstsetudied the MP
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was found between =21 andn’ = 24 (about 20 texts studied). The
alphabets of these two languages each consist® @tt2rs. In Czech
texts the MP was found at abaut= 40 (the Czech alphabet consists of
41 letters). When all vowels were removed from adbztext, the
location of MP shifted to about” = 28, which is the number of
consonants in the Czech alphabet. In texts of nEamgpean languages
the MP occurs at” between about 25 and 35 (while the sizes of their
alphabets are close to these numbers as well). rétheval of vowels
shifts the position of the MP toward lower valuegjich, again, are
close to the numbers of consonants in these alphabe

On the other hand, in some other cases MP was faind
considerably larger than the siZeof the alphabet. For example, the
Minimum Point for the English text of the UN Sead@ty was found at
n' =85, which is substantially larger than the siZe=(26) of the
English alphabet. In a few other texts in Europkamguagesi was
found to be between about 50 and about 70, whist ial well above
the corresponding alphabets’ sizes. Moreover, tiits in the equation
for S, are not individual cells, but pairs of cells, se tininima onS,
graphs correspond to the values of Bather tham’. Therefore, while
the alphabet’'s size has an obvious effect (thedonige alphabet, the
higher n" is expected to be) it seems reasonable to consfuer
coincidenceof n” and the alphabet’s size for some of the studigt$ te
as probably accidental. The nature rof will be interpreted in the
discussion section.

The location of the UCP in all Hebrew and Aramaixt$ was found
close ton~ 150. In texts written in European languages the WaB
found between about=~400 andn=600. Of all the characteristic
points, UCP is the least informative because ieot$ little if any of
the intrinsic properties of the studied text. Imdiethis point is where
two curves, one for the meaningful text under itigasion and the
other for a hypothetical randomized text, inters¥¢hile the shape of
the S, curve is determined by the text's structure, & ha relation to
the S, curve, which is for the artificial randomized tego the structure
of the studied text has only a remote bearing oreretg, will
accidentally cross the independ&aturve.

Finally, the Peak Point was observed between 3,000 and
n~10,000. As a rule, none of the clearly distinguistoharacteristic
point (DCP, MP, UCP, or PP) was observed on the E&@s’ curves
for meaningless strings of letters, so the appearahthese points may
serve as an indicator of the semantic meaningfaloéa text.
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Fig. 2. The measureds, “curve” 1) and expecteds{ “curve” 2) LSC sums
for the set of short stories in Russian. The textal length is 37000 letters.

For example, in Fig. 2 the expected and measured &8ns are
shown for a text of a set of short stories by théhar, published in
Russian. We see that despite the drastic differemesveen the
languages (in Fig. 1 it was Hebrew while in Figt #as Russian), the
different text lengths, and the thousands of yéatsveen the times of
creation of the texts in these two cases, bothrdiguisplay identical
features in regard to the behavior of the varigbdf letters distribution
along the texts.

In both Fig. 1 and Fig. 2, we see the same chaisiitepoint DCP,
MP, UCP, and PP, albeit they happen at differeftesof the cell's
sizen. A similar picture, with the distinctive points @®, MP, UCP,
and PP) was observed fall meaningful textsn all studied languages
(except for Finnish and presumably Estonian, wise® is absent).

What about randomized texts? Look at Fig. 3, wimeth expected
and measured LSC data are shown for a text obtailaed computer-
performed permutation of the letters of the Hebtewt of Genesis.
Comparing Fig. 1 with Fig. 3 shows that permutatafnletters has
completely destroyed the regularities observed Ire toriginal
meaningful text.

Hence the LSC test allows for an immediate recagmiof whether
the text is meaningful in some (even completely novin) language
written in any (including the completely unfamilialphabet, or is just
a meaningless gibberish.
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Fig. 3. Measured %, “curve” 1) and expectedy({ “curve” 2) LSC sums for a
text obtained by a random permutation of letterghaf Hebrew text of the
“Bereshit” (the Book of Genesis). Compare to Fig. here the sums are
shown for the same text in its original, non-pereauform.

It should be noted that automatic permutation & kbiters of a
meaningful text, although converting it into gibiser does not
guarantee its complete randomization. Since thmpgtion procedure
is performed randomly, the number of possible oues is very large
(it equalsN!). The overwhelming majority of the permuted sjsnare
meaningless. However, among the vast multitude hef permuted
versions of the same original text there is a gerfiaction of strings
that accidentally contain blocks of letters possgsa certain degree of
order, even including segments of a semanticallgmmgyful text.

Therefore we cannot expect the LSC data for aqaati permuted
string to coincide with the expected LSC sums dated by
equation (2) for a hypothetical randomized text.

Indeed, as we see in Fig 3, the measured LSC suthifoparticular
permuted version of the text of Genesis is distingin the expected
LSC sum calculated by equation (2) for a hypotla¢tiandomized text
of the same length and with the same letter-frequetistribution. At
relatively small cell sizes (up to = 50) the “curve” of the measured
LSC sum is more or less close to the “curve” fag t#xpected sum.
This indicates the reasonably high degree of textdomization
achieved in this particular permuted string by téter permutation
procedure. An>50 the curve for the measured LSC sum deviates fro
the curve for the expected LSC sum, the deviatioosurring in a
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haphazard manner depending on the values 8imilar data have been
observed for other versions of the letters striogtined by random
permutations of the same original text. In eachpied version the
specific haphazard deviations &f, from the curve forS, are of a
different shape. The haphazard deviations in questndicate the
presence of blocks of letters with a certain degreerder within the
overall randomized string, these blocks havingedéht sizes and
distribution in each permuted string. If all pddsipermuted versions
of the text in question were available to see, ahsould be among
them also one permutation identical with the expé¢turve” S vs.n,
shown in Fig. 1. Moreover, among those permutetstere will be an
exact copy of the original non-permuted text (idgrdermutation).

What is significant for our study is that the “ces? of the measured
LSC sums for randomly permuted texts usually lalckse typical
features observed for meaningful texts. We doret @e the graphs for
randomly permuted strings (Fig. 3) any of the pi{2CP, MP, UCP,
and PP; see Fig. 1 and Fig. 2) which invariablyuocon the LSC
graphs for meaningful texts.

Besides the LSC sums, the discrimination betweeanigful texts
and gibberish can also be done by using the LSGities In this case
logarithmic coordinates are convenient as the #texa log d. —log n
curves for completely randomized strings are sltaimpes (equations
5,6,and 7).

Fig. 4 exemplifies the expected and measured LS@Gigecurves
(in partially logarithmic coordinates), in this emple for the translation
of the Book of Genesis into Latin. (For convenietiee numbers on the
abscissa are given farrather than folog n).

Comment. The shape of the “curves” in Fig. 4 is a typiesample of a
Zipfian law [8] at work. The original Zipf's law ated an empirical
functional relation of the word’s frequency in &ttéo the same word’
“rank” in the order of words’ frequencies. Subseufly the term
“Zipf's’ or Zipfian” law was extended to a wide vaty of phenomena,;
see, for example, [9]. In all of its modificationgipfian law always
establishes dependence betwaen characteristics of the same object
In the original Zipf's law theobject was a certairword. The two
characteristics were the frequency of that word text and the “rank”
of the same word in the order of frequencies. Téia th Fig. 4 present
a relation between two quantities—one the cell si (expressed as
the number of letters in the cell) and the otthewhich is an artificially
constructed cumulative property of the entire gtrin
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Fig. 4. Logs of the LSC densities: estimatel], (‘curve” 1) and measuredi4,
“curve” 2) for the translation of the Book of Gersesito Latin.

The cell's sizen seems, at a glance, a property of an individukl ce
rather than that of the entire string. Were thietthe curves in Fig. 4
would not reflect the relation between two propmertiof the same
object, so the graphs in Fig. 4 would not be thal rgipfian
dependencies, but rather look Zipfian-like by aeaid In fact, though,
as the entire body of this work shows, the ceit® s is a property of
the entire string. Indeed, as some valuenois chosen, the string
converts into a collection d&fequal cells, each of size The value ofi
determines the values of all characteristics reieta the letter serial
correlation analysis.

Moreover, the very value ofl is determined by the value of
Hence, botm andd are properties of the entire string, thus justifyi
the interpretation of the curves in Fig. 4 as geauiZipfian
dependencies.

The curve fod,, in fig. 4 obviously consists of two parts. Onetpar
atn < n’, is practically indistinguishable from the cunee 6., which is
of the expected LSC density. The second part ofcthee ford,, at
n>n, is clearly different from the curve fad.. Using the least
squares fit, we found that the entire curvedpas well as both parts of
the curve ford,, are all well approximated by straight lines.

In this particular example, the corresponding eguat are as
follows: for the expected LSC densityd.= 1,729,180 1%
(correlation coefficient is 0.9992); for the measurL,SC density at
n<22,d,= 1,788,292n °"3(correlation coefficient is 0.99992); for
n>22,dy,= 1,500,610n "3 (correlation coefficient is 0.99965).
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The negative exponents in the above equationsitidir dslightly
from 1. As discussed earlier, in the case of theeeted LSC densities,
the deviations of the exponent from the value of(the Iatter
corresponds to the theoretical hyperbolic curvégcethe effect of the
text’s truncation when the end cell happens tanbemplete and is cast
off. In case of a measured LSC density when theehaf d,,—n
function cannot be theoretically calculated, theviakion of the
exponents from unity reflects the difference in ibeter-variability
distribution between meaningful texts and theimpatied versions.

From the above data (which exemplify the similesutes obtained
for a wide variety of texts in 12 languages) ildals that LSC statistics
may be considered a reliable tool for discrimingtitbetween
meaningful texts, regardless of language and akthaln the one hand,
and gibberish, on the other.

However, we still need to test whether or not megleiss strings
(besides those obtained by permutations of lettdrsmeaningful
originals) can sometimes masquerade as meanirggisl by producing
LSC data imitating those exemplified in Figuresnd 2.

To this end various versions of meaningless stritigse possessing
a high degree of order as well as those which aylelyhchaotic, were
studied. First, the LSC statistics were appliedstiings obtained by
various methods of permutation of the meaningfigioal text.

In one version of the procedure, the words witldoheparagraph of
a meaningful original text were randomly permuted & computer
while the paragraphs themselves stayed in thejirai places. As long
as the doubled cell sizen(Ris not exceeding the average word length,
the behavior of LSC sums, as could be expectedaired similar to
the one observed for meaningful texts. Howeverthasdoubled cell
size (4) becomes larger than the average word lengthL 8@ sums
for the words-within-paragraphs-permuted stringviate markedly
from those for the meaningful texts.

A similar effect was observed in strings obtaineg tandom
permutations of the paragraphs of the original rimegual text while
the words and letters within the paragraphs rendaimgact. If
paragraphs are short and have been randomly patptbteoverall text
becomes in a certain sense meaningless. Since vhovike text within
the paragraphs remains intact, each paragraph rpessewithin its
confines, the structure of a meaningful text.

Therefore, although a string obtained via randonmpiéations of the
paragraphs of a meaningful text (keeping the tewithin the
paragraphs intact) loses its logical consistency, drence, can be
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characterized in a certain sense as meaninglessuitl be expected
that for the doubled cell sizes not exceeding therage paragraph
length the LSC curves for such permuted stringslavinok similar to
the case of a meaningful text. Indeed, such a behasas observed for
the strings obtained by the described version afmp&tion. To
illustrate the described behavior, in Fig. 5 theCL&urves are shown
for the Hebrew text of the book of Genesis obtaimidthe described
permutation of verses without modifying the texthin the verses.

At n < 22, i.e. &< 44, when the doubled cell’'s size is less than the
average size of a verse, the measured LSC sumige cbehaves
similarly to the curves for meaningful texts: thevncross Point and
the Minimum point for this permuted string are abeéd at about the
same values on as for a meaningful text.

However, atn > n* = 22 the measured LSC sum for the text with
permuted verses behaves differently from meaningtekts,
approaching the behavior of fully randomized texts.

These data indicate that there may be (albeikitnsenot very likely)
two types of order related to the letter-variahititistribution along the
text—a short range order and a long range orderffl8ty paragraphs
(or verses) destroys the putative long range obdéleaves intact the
short range order, and the shape of curves fomigs@sured LSC sums
might reflect it. (This question will be discussetittle later.)
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Fig. 5. Measured §,, “curve” 1) and expectedS{ “curve” 2) LSC sums as
functions of the cell's size n for a text obtaineg a random permutation of
verses in the Hebrew text of the Book of Genesishwit permuting letters or
words within the verses). The text's length is B&,0etters. The scale on the
abscissa is logarithmic, but for convenience itmiarked in the values af
rather than of log.
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In one more version of permutation, alords of the text were
randomly permuted by the computer without permutetters within
the words. In this case the curve for the measw®@ sum was
similar to those for meaningful texts as long as ¢kll’s doubled size
2n was less than the average length of a word. Homevkeen 2
exceeded the average word length, the measured dUBCbehaved
differently from the meaningful original, but simil to the curves for
the texts randomized by letters permutations.

In another set of control experiments certain iaisifly created
meaningless strings, some with highly ordered ahérs with chaotic
structures were constructed.

One such text was formed by repeating letters @f English
alphabet 3,000 times each (first the letter A wegseated 3,000 times,
then the letter B, etc.). This string was 63,0G€ets long (it contained
no segments for the last five letters of the Emgéiphabet). This string
was highly ordered so its entropy was close to.z&ioce the structure
of that text was precisely known, it was possibbe theoretically
compute its LSC sum and density. The precise faamidr calculating
the measured LSC sums and densities for that textshown in
Appendix 2. While the derivations of these formukre omitted to
keep the paper’s size within reasonable limits, tadidity of the
formulae in question follows from the almost petfegincidence of the
data obtained experimentally and those calculasamuthese formulae.
(Anybody may get the detailed derivation of thenfata in question by
requesting it from the author.) In Fig. 6 the pdéthe LSC density vs.
cell size (in log-log coordinates) is shown for thear-zero-entropy
string in question. The results of measurements ealdulations
(conducted for the same set of discrete cell sizeis)cided in this case
so closely that the two curves could not be regbfuem each other, so
the same zigzag-shaped graph in Fig. 6 repredemtdata for both the
measurement and calculation.

This result testifies that we have developed a ommsle
understanding of the LSC effect and its relatiorhi text’s structure.
As Fig. 6 shows, the behavior of the LSC statisticshe described
near-zero-entropy meaningless string has nothingpmmon with the
behavior of the corresponding quantities for meghuih texts
(illustrated in Fig. 4).

Another artificial string was formed by sequentiatepeating the
English alphabet 2422 times. The entropy of thaammegless string is
a little higher than for the previously discussed entropy texts, but it
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is still very low. For this text the shape of tBg— n curve also turned
out to be different from the curves for meanindéxts.

One more artificial meaningless string of low epfravas created by
first repeating the first half of the English alples i.e. the string
ABCDEFGHIJKLM, 17 times; to its end a string wasncatenated
which consisted of the letters BCDEGFHIJKLMN repmshtl7 times;
then the letters CDEFGHIJKLMNO, repeated 17 tinfelpwed, etc.,
until the last substring comprising the second bathe alphabet, also
repeated 17 times, completed the text.
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Fig. 6. Dependence of both measuread})(and calculatedd() Letter Serial
Correlation densities on cell size n (in log-log hnates) for an artificially
created highly ordered string 63000 letters loray.donvenience, the values on
the abscissa are indicated for n rather than fgarithms of n. The upper cusp
corresponds ta = m. To the left of the cusp <m, to the righth > m (in this
samplem = 3000).

The procedure was repeated 7 times, so the tatgtHeof that text
was 20111 letters. Again ti&,— n curve for this highly ordered text
was distinctively different from th&,— n curves for meaningful texts.

Finally, one more meaningless text was made up dndomly
hitting the keys on the computer keyboard, tryimgvoid favoring any
particular letters at the expense of other lettdgslike the previously
discussed artificial texts, which all were subgtdiyt ordered and thus
had low entropy, this string (which was 10,000 degtt long) was
prepared with the intention of yielding a highihdommized string thus
possessing entropy substantially exceeding thateaningful texts.

It is known [10, 11] that actions of humans canbeteffected in a
genuinely random manner. Despite the strenuousteffoavoid any
selectivity in hitting the keyboard buttons, a humaperator will
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subconsciously but inevitably hit the keys in a fidly random way.
As expected, thes, vs. n curve for the supposedly random string
obtained as described revealed certain subconsemastivity which
resulted in a letter frequency distribution differérom a fully random
string. To a certain extent the letter frequencgtriiution in the
artificial, supposedly random text, indeed turnegt do be more
uniform than in meaningful texts. (In a perfecthndom text the letter
frequency distribution is ideally uniform). Howeydat was not as
uniform as it should be in a perfectly random gfrifherefore, th&,,—

n curve for this artificial high-entropy text dispk certain features
resembling the data for meaningful texts (for exiEmna minimum at a
certain valuen* of a cell size). Although these features are amt
clearly evident as they are for meaningful texteytmay cause doubts
in regard to the distinction betweedisordered gibberishand
meaningful text insofar as the LSC statistics ipligg. While this
phenomenon is perhaps of interest for psychologypur case we
needed to determine whether or not the LSC skigthables us to
distinguish between semantically meaningful striragel disordered
gibberish of high entropy.

It was found that the plots specificLSC sums for meaningful texts
are more clearly different from those for the #&i#l high-entropy
gibberish than are the plots &), sums. Furthermore, the data are
distinctively different for meaningful texts and rfchigh-entropy
gibberish if a text is divided into halves and th8C statistics are
compared for both halves. In the case of a meaningkt, the exact
locations of the MP (i.e. the value of) as well as the “depth” of the
minimum typically are different for the two halve$ the text. On the
other hand, in the case of artificial high-entrogybberish the
characteristic points for both halves of the tert@most identical.

As mentioned before, we have also studied textsiomdd by
removing either all vowels or all consonants frdva theaningful texts.
These studies have revealed that the “shrunk” eoisposed of either
only consonants or only vowels preserve all theéufes of the LSC
statistics observed for the original, full versiafsthe same texts. On
the curves of the measured LSC sums for “shrunkktsteall
characteristic points DCP, MP, UCP, And PP, disedsearlier, are
clearly seen, as they are on the curves for thedildletters versions.

(There is a quantitative difference between th€ Issm curves for
the full, all-letters versions, and for the “shrimaly-vowels or only-
consonants versions. The removal of all vowels, eweh more of all
consonants, causes a shift of the MP to lower gabfen’ and also
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decreases the “depth of minimum” on those curvEsi$ points to the
deeply intrinsic character of the LSC statisticehlvior, which is not
destroyed even by such a brutal mutilation of texstshe removal of all
vowels or of all consonants.

4 Discussion

A detailed discussion of the entirety of our LSGad@wvhich comprise
over 300 graphs and scores of tables) cannot be dathin the
confines of a reasonable paper size. Thereforeablyef discussion of
the most salient points will be offered here.

First, we will discuss the nature of the Downcré&gsint (DCP)
observed on measured LSC curves for meaningful s.teXthe
explanation in this case seems to be almost obvidRscall that the
DCP was always observed at the cell’s size betweed andn = 3. In
other words, ah = 1, i.e. when the cells contain only one lettecthea
the measured LSC surfs, for meaningful texts is slightly larger than
the expected LSC suf, calculated for a text obtained by permutation
of letters of the original meaningful text. Thid, aurse, is expected.
Indeed, ah = 1 each cell holds just one letter.

Since the terms in the LSC sum are contributed payrs of
neighboring cells, there are only two possibilitifsboth neighboring
cells of sizen = 1 happen to contain the same letter, the term
contributed to the LSC sum by that pair of cellsag zero. If, though,
the neighboring cells of that size contain différktters, such pair of
cells contributes to the LSC sum a term of 2 (sie@eh of the differing
letters in question contributes 1 to the sum; sp€18).

It is easy to figure out that the maximum valueSgf(for n = 1) is
observed when no pair of neighboring cells cont#tiressame letter in
both cells; the sum is in this caSg= 2(L — 1) where in this cask =
k. Therefore, the more pairs of neighboring cellsiaén = 1 hold the
same letter, the smaller the LSC sum is. In nattealls doubling of
letters is rare; the probability of any pair of gi@oring cells of sizae
= 1 containing the same letter is less than thebgliity of them
holding different letters.

On the other hand, in a randomized texts all Iett@re almost
equally likely to occur in any cell (except of teéfect of the letters
various frequency, mentioned above), so if in pétlere is lettek, the
probability of the same letteralso appearing in celj«1) is almost the
same as for any other letter, sgyof the alphabet. (Strictly speaking,
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this assertion is exactly valid only for a perfgaindom text, while the
calculation of the expected sum was conductedefdstrandomized by
letter permutations of the original meaningful tektowever, the
calculation has shown that for not very short tetkis quantitative
difference between the values of the expected L@@ for perfectly

random texts and for letter-permuted texts is,racpical terms, utterly
negligible; therefore the above assertion remanagtally valid for

our data).

As a result, a randomized textratl usually contains more pairs of
neighboring cells with the same letter in each thha original
meaningful text. Hence the LSC sum for a randomized atn = 1
includes more terms equal to zero than the corretipg sum for a
meaningful text. This results in a slightly larg8 at n = 1 for
meaningful texts than for randomized strings.mMt 1, when a cell
contains more than one letter, the LSC sums, bajtected and
measured, decrease. Indeed, if cells contain onlgttér each, each
time two neighboring cells hold different letterts means a 100%
change of a cell’s content from cell to cell.

If, though, cells contain more than 1 letter eamtly a fraction of
neighboring cells will have the entire set of letten each cell different
from its neighbor; some other pairs of cells willvie only partially
different contents, so the change of a cell’s canfie@m cell to cell, on
the average, will be less than 100% (i.e. the ixeddetter variability
decreases far > 1).

The LSC sum is larger when the variability of ledtdistribution is
larger. Since fon > 1 the relative variability decreases, the LSC sum
drops. It drops faster for meaningful texts than fandomized ones
because in the latter this effect is mitigated ey thuch larger degree
of the overall randomness of the letters distrifiutiAs a result, the
descending curve for the gradually decreasspgerosses at the DCP
the curve for the also decreasing, but at a slpaee S..

If the above explanation is correct, certain pridics can be
suggested. If a certain language’s orthography iregiua frequent
doubling of identical letters, for a meaningful ttéx such a language
the measured LSC sum will contain,rat 1, a slightly larger fraction
of pairs of neighboring cells both holding the sdetter. Such pairs of
cells will contribute to the LSC sum terms equakéro, and this will
result in a decrease &, for such a text, making it less than the
expected LSC surf, atn=1. Finnish and Estonian orthography require
a frequent doubling of both consonants and vowEterefore, based
on the above interpretation of the Downcross Poinhtcould be
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predicted that for Finnish (and presumably Estonidgexts the
measured LSC sur§, atn = 1 would be no larger than the expected
LSC sumS,, as was observed in the variety of other texts, d the
contrary, would be below the expected LSC sum. Philiction has
been fully confirmed experimentally for Finnish t&x

Based on these data one more prediction was mattalian
orthography requires a frequent doubling of conatsidut not of
vowels. Therefore, for regular meaningful Italiarexts no
“abnormality” in the mutual location &, andS;. curves ah = 1 can be
expected. Indeed, the LSC curves for Italian telxésl the usual
configuration wherein at = 1 the measured LSC sum is slightly larger
than the expected LSC sum. It could be expectedgth, that in Italian
texts stripped of all vowels the frequent doublofgconsonants would
result in the inversion of thg, andS. curves ah = 1, as was observed
for Finnish texts. This expectation was also flgfil

The described observations favor our interpretatiofi the
Downcross Point.

Let us now discuss the Minimum Point. The valughef measured
LSC sumsS, is determined by theariability of the letter distribution
along the text. Recall that the terms in thesum are calculated for
pairs of adjacent cellsThe more identical letters happen to ocoar
the averagewithin the length of g, the lessS,, is. Obviously, then, the
minimum on theS,— n curve must occur at such cell’'s sizg which
corresponds to theminimal average variability of the letters
distribution within a segment of the size*2

The observation of the MP means the revelationwioét can be
referred to as araverage Domain of Minimal Letter Variability
(DMLV) whose size is 8% and which exists in all meaningful texts
using an alphabetical writing system, regardlesdaofjuage, style,
authorship, alphabet, etc.

While the DMLYV is consistently present in all me=gfiul texts, it is
usually absent in gibberish, both of the highlyeyetl and the highly
randomized kinds. (Although in extremely rare casesstring of
gibberish may accidentally happen to have a DMLs tvould be an
exceptional occurrence, while in meaningful tekis a rule.)

The statement asserting the consistent existenee@ILV in all
meaningful texts (but its usual absence in gibbgrisllows directly
from the observation of a distinctive minimum oe 8y,— ncurves, i.e.
it is simply a statement of fact. Its interpretatialthough post-factum,
does not seem very difficult.
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It seems reasonable to postulate that the sizéddlaV is related to
the size of a text's segment wherein a certainctgpcovered. Then it
can be expected that certain words related tottyt occur within
that segment more often than on average in the dasxa whole.
Consequently, a certain set of letters is also ew®geto occur within
that text's segment more often than in the resheftext. This means a
lower letter variability within the segment in qties, which
contributes to a smaller value &f,. The size of a DMLV may be
expected to be connected to theerage sizeof a text's segments
covering individual topics.

Our interpretation jibes well with the observediations between
the positions of MP in various texts. For examgle Hebrew and
Aramaic texts are written in alphabets each coimtgionly consonants,
with the total of 22 letters in the alphabet. @a bther hand, the most
common European languages use substantially loalpéabets (for
example, the English alphabet has 26 letters; tiesi@n alphabet has
33 letters, while the Czech alphabet has 41 Igttdiisese variations
alone necessarily must affect the size of a tes#'gment covering a
certain topic. However, besides the alphabet’s simepeculiar ways in
which each language structures sentences enhdmceartations in the
DMLV. Here is a simple illustration. Consider a nmaxhat came from
the ancient Hebrew texts but has become part ofynaacient and
modern languages. Let us write that maxim in sévarguages. Start
with its original form in Hebrew, which looks likeya %21 px (to be
read from right to left). Transliterated into Lattharacters, it takes the
following form: EIN NVI BIRQ lIts length is only 10 letters.

Now let us write the conventional translations loétt maxim into
English, German, Russian, and Ukrainian. Engligiere is no prophet
in one’s native town(31 letters, of which 19 are consonants). German:
Es gibt kein Prophet in seiner StadBO letters, of which 19 are
consonants). Russian (rendered in Latin lettefdgt proroka v
otechestve svoen(25 letters, of which 15 are consonants; the
combinationch in the Russian alphabet is rendered by one letter)
Ukrainian; (rendered in Latin letterdffema proroka u ridnomu misti
(25 letters, of which 14 are consonants).

Obviously, the Hebrew text requires substantiaiyédr letters to
cover a certain topic, so the DMLV for Hebrew natly is shorter,
than, say, for English or Russian, and the mininamthe S, “curve”
for Hebrew texts appears at lower n (usually al2@24) than, say, for
English texts (typically somewhere about 70 andnewgore). The
unusually largen” = 85 for the UN Sea Trade Treaty also can be
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interpreted on the same basis: it is written ineavy legalese; such
documents are known for a pedantic verbosity, whezach statement
is expressed with multiple asides and additionaligés, which makes
the segment of a text, covering a certain topibstntially longer than
in non-legal texts. This shifts to larger values than in non-legalese-
written texts.

A natural unit of a semantic content is a sentefberefore it may
be surmised that the size of a DMLV is somehowteeldo the average
length of a sentence. It hardly could be the lermfttone sentence,
because if & were about one sentence longwould be about half a
sentence long, and in this case to ensure the raiatters’ variability,
two halves of one sentence would need to containthe average,
almost the same set of letters, which can hardlgxipected. Therefore
it seems reasonable to expect that DMLV should ctmapseveral
sentences, albeit not too many, so that the ssewffiences within the
scope of an average DMLV covers a specific narrolwjext.

To test that hypothesis we have measured the avdesmgths of
sentences in a variety of texts and compared thé&mthe values of
2n’ for these texts.

The value of B* varies, depending on languages and specific texts
and usually is between 40 and 170 letters. On therochand, the
average length of a sentence, depending on texs, faund to be
between 0.4 and 1.35’, the mean value being about §.8Therefore
it can be stated that there is in all meaningfut¢@n average Domain
of Minimal Letter Variability which is between 14&nd 4.5 sentences
long, its average length for a variety of textsngesbout 2.5 sentences.
Apparently that is the average length of a texggmsent typically
covering individual subjects and hence containirlgréted variety of
letters. As the text's segment becomes longer tharthe average, the
length of the DMLYV, the subject changes, and withlso the words
used, and hence the letter composition becomes raied, so the
measured LSC su®, increases above the minimum.

Finally, let us discuss the peak (PP) on fe— n curves for
meaningful texts. To decipher the nature of thatkpspecial tests have
been conducted, in which two types of texts wermmared. To this
end a long text would be chosen, for example the ¢ several
sequential chapters of Tolstoy's nov&lar and Peacein English
translation.

The length of the text subjected to the test in paicular case was
180,000 letters. This text was then divided intoetial segments of
10,000 letters. The LSC sum was measured foritsiesegment. Then
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the text was gradually enlarged by sequentially catenating
additional segments of the same size. The LSC suens measured at
each step of the text's gradual enlargement. Insaeof tests, at each
step the added segment wdiferentfrom the previously concatenated
one, being thenext segment in the sequence constituting the 180,000
letter-long original text. In another set of tesis,each stephe same
initial segment was repeatedly concatenated tatifireg, until the total
text comprised 18 identical parts each 10,000rket@ng. This way a
strong long range order was artificially generatedhe tested text,
while in the first set of tests the long range ordfesuch existed, was
limited to that existing in the text naturally.

Comparing the two described types of a text, it feamd that the
LSC sums behave quite differently in the two témtguestion. These
data indicated that the natural meaningful textsspes no long range
order. As the cell sizen increases, each cell encompasses a larger
chunk of a text. As the length of the text withircell increases, local
violations of order accumulate, until no order dam observed any
longer. Since thahort rangeorder naturally does not exist anymore
for such large values of, and the long range does not exist in natural
meaningful texts anyway, for such largethe text starts behaving
similar to a randomized one. For the latter, as ltkbavior of the
expected sunS, shows, the LSC sum always decreases with the
increase ofh. Hence thes,— n curve, which is ascending at smalter
now changes to a descending one, typical of rarmEdnitexts.
Therefore the peak on ti#, — n curve corresponds to such cell sizes
where the LSC type of order in the text completdisappears, and the
LSC “curve” follows the behavior typical of randdexts. .

5 Conclusion

As the data presented here show, the LSC statisiid®s it possible in
many cases to reliably distinguish semantically mrggful texts from
gibberish, regardless of the alphabet in use, laggustyle, authorship,
etc. The LSC statistics have revealed certain mdgatures of the
order intrinsic in meaningful texts, as, for exaephe existence in all
such texts of an average Domain of Minimal Lettearigbility.
Furtermore, a conection was revealed between ti@ dtStistics and
Zipf's law.
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The ancient Hebrew and Aramaic texts display eyatttt same
behavior regarding the letters’ variability distriton along the text as
the text of a Russian newspaper printed in 198&saa Shakespeare’s
play in English, or as a translation of Genesise i@zech. Languages
differ in their vocabulary, grammar, idioms, andplabets, but
somewhere on a deeper level they all seem to foltbev same
statistical features, which perhaps points to tbemmon origin from a
single source.
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Appendix 1. Derivation of the Formula for Expeclestter
Serial Correlation Sum

Recall thatX;; denotes the number of occurrences of lettén a cell
numberj. Since all cells are of the same lengthve have

Var (Xij) = Var (X,j+1), (A1)
E(Xij) = E (X, j+2), (A2)
where Var(X) is the variance of X and E is the estpd value of X.

Step 1 Variance is calculated [12] as follows :

Var () =E (') — [E ()] (A3)

where the first term is the expected squarX ahd the second term is
the square of the expectd

Consider now the expressi@fi(X;; + X; j+1)] 2 which is the expected
square of the sum of the values Xfin two sequential cells. From
equation (A3) we obtain

E[(Xij + Xi +1) ] = Var (Xij + Xij1) + [EQG; + Xijz)]%  (A4)
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The expected value of a sum equals the sum ofxthected values
of the items it comprises [8]. Then, accounting éguation (A2), we
obtain from equation (A4):

E[(Xij + Xi,1o2) ] = Var (G + X jo2) + 4[E())]* (AS5)
Now consider the expression
E[(%,— X, 1+2)T + E[(Xj + Xi j+0)". (A6)

Replacing the expected value of a sum with the sfiraxpected
values of its constituent items and accounting(A&), we obtain from
(A6) the following set of algebraic transformations

E[(%i;— X, j+2)°] + E[(Xj + Xi js0) ] =
E[(%— X, j+)” + Xij+ Xij+2) ] = (A7)
ELOCG) + X 1=2X) Xijert XEj+ X1 + 2Xij X jogg =
E[2 X+ 2 X% ju] =E [4 X5 ] = 4EDC ]
Now subtract (A5) from (A7):
[ — X%, 1+0)°] = 4 E ] — 4 [E)]” - Var @+ Xi i) (A8)

From equation (A3) we can see that the first twatein the right side
of equation (A8) equal 4VaiX(;). Then

E[(X,;— %, 1+0)°] = 4 Var () — Var ;; + X; j+1) (A9)

Comment If we dealt with perfectly random texts,; and ;. ; would
be independent random variables. However, we atiginig formulas
for a text randomized by a permutation of the tsttef an original
meaningful text, so the permuted text is not péifemndom. Unlike
for a perfectly random text, the stock of availaletgers in our case is
limited to those letters present in the originalamiagful text and in the
same numbers. Therefore if a certain letteoccurs in a cell, this
decreases the stock of this letter available fer riext cell and thus
diminishes the probability ok’s occurrence in the next cell. Hence
there is a certain negative correlation betwegnand X, which
therefore are not independent variables. In sushscthe variance of a
sum cannot be replaced with the sum of varianceisofonstituent
items so the variances of boty and(X;; + X; j:1) must be calculated
and inserted into equation (A9) separately. Ifutifn variables<; and
Xi j+1 were independent, the right side of equation (A®ult equal
2Var (Xiyj).
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Step 2. We have to choose now the distribution function ftbe
quantityX;; within a cell. Our options are limited to the cheisetween
the multinomial and hypergeometric distributions 3]J[1 The
multinomial distribution is applicable to tests kwiteplacement while
the hypergeometric distribution is applicable tostse without
replacement. In our case, if a letter, sayccurs in a cell once, this
decreases the probability it will occur again ie gtame (or the next)
cell, because the stock of letters is limited wsthactually found in the
original meaningful string. Therefore the condisonander which our
calculation is conducted meet the definition of tgeswithout
replacement. In other words, we postulate the ggmmnetric
distribution of letters’ frequencies within the lsel(While this choice is
theoretically well justified, it has a very littlegnificance in practical
terms. As the pertinent calculation shows, thel fioamulae ofS, differ
between the cases of a hypergeometric and a muiliihalistributions
only by the factor ot / (L — 1), whereL is the truncated (if need be)
length of the text, expressed as the number @rketObviously, except
for extremely short strings (which are hardly ofemest) the above
factor is so close to unity that the differencewssn the formulae for
the two listed distributions is utterly negligibldor the sake of
theoretical purity we calculate here the expect&®CLsum for a
hypergeometric distribution.)

For the hypergeometric distribution, the variansecalculated as
[12]:

Var () = (L-m)mp(1-p)/ € -1), (A10)

wherem is the sampling size armg = M; / L. Recall thatM; is the
number of occurrences of the letterin the entire string and is the
truncated (if need be) length of the text expresasda number of
letters.

For the first term in the right side of equatiorBjAhe sampling size
m equals the cell sizen = n = L/ k For the second term on the right
side of (A9) the sampling size is twice as lange=2n = 2L / k. Then
we can write for the first term on the right sidgA9):

4 Var X)) =4C -L/k) (1 -M/L)Mi/ k(L -1),
or, after a simple algebraic transformation
4 Var X)) =4M; (L-M) (1 -1/ /k(L-1). (A11)

Similarly, for the second term on the right side (8B) with its
doubled sampling size we obtain



SERIAL CORRELATION STATISTICS OF WRITTEN TEXTS 41

Var (X”' + Xi, j+1) =2 (1 -2 /K) M; (L - M|) Ik (L - 1) (Alla)
Finally, plugging (A11) and (Al1a) into (A9), wenti
E[(Xi =X, 1+ = 2M; (L— M) /K (L-1). (A12)

To complete our calculation, we have to sum (Al®raall letters
of the alphabet (fromm= 1 toi = Z) and over all pairs of neighboring
cells (fromj = 1 toj = k —1). Since, however, all cells are of the same
size, the summation ovgrcan be replaced with a multiplication by the
value ofk —1 . This results in the formula

1\&,, L-M,
S =21-= M, L,
. 2( ka " L-1

i=1

Equation (2) in the body of the text is a repliéahe above equation
with one modification: the numbeéc of cells which appears in the
above equation, is replaced in equation (2) wahekpression through
the cell sizen and the string’s truncated length< L / n).

Appendix 2. Formula of LSC Sum for an Artificial wo
Entropy Text Composed of Repeated Letters

Consider a string. letters long composed & equalsegmentseachm
letters long, where is the number of letters in the alphabet. Eaeh
long segment contains one particular letter, reqgbattimes. There are
no two segments containing the same letter. Fample such a string
can haveZ = 26 segments, of which the first one contaimimes the
letter A, the second segment times the letter B, etc., up to the
segment number 26 which contamgimes the letter Z. As before, we
also divide this string intok cells each n letters long, so that
kn=mzZ =L Obviously the boundaries between cells and those
between segments generally will not coincide. Thkie ofm is fixed
for a particular string while the value ofvaries as we calculate (or
measure) the LSC sum. Since the structure of thisgsis precisely
known, we can theoretically calculate the LSC sonthiat string.

We have to distinguish between two cases, inmarren and in the
othern > m. Introduce the following notations:

Form>nm/n=s+y;
Forn>mn/m=r +w,
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wheres andr are integer parts whitke andw are fractional parts of the
corresponding quotients.

As long asm >n, the calculated LSC sum is found from the
following equation (its derivation is freely avdila to anybody who
would request it from the author. Its validity iscartained by the
almost perfect coincidence of the data obtainedthéd equation with
the measured data):

S = 2j*n2{i 1-iv)? +i(iv)2}.

Forn > mthe formula for the LSC (its derivation is alsa#able on
request) becomes

S =2fm i(l—iw)z + Z (iw)Z}.

In these equations = (Z—1)/i" andt = (k—1) (h—m)/m; i is
either the integer part of the quotient\d(for the case ofn > n) or the
integer part of the quotient W/ (for the case ofi > m).

In those cases where eithar/ n (if m>n) orn/m (if n>m) are
integers, the above equations convert into muclplsimversions. For
m > nin such cases

S=27(Z-1). 0}
Forn > min such cases
S =2mn(k-1). (i)

For the particular case of = m both equations (i) and (ii) yield
identical results.

The LSCdensityd, is obtained from all the quoted formulas via the
division by the cell size.

The points between those for the integer values, édrm a zigzag-
shaped curve which has no meaning in itself butvshtbe trends.

The uppermost cusp on the curve in Fig. 6, whichasges the
ascending and the descending branches of the gcaptesponds to
m = n. (The particular curve in fig. 6 relates to a tekterem= 3,000,
and the total length is 63,000 letters). The rssoftcalculations using
the quoted formulas turned out to be very closta¢oresults of a direct
measurement of LSC density, so that the calculated measured
curves practically coincided. This observation magrve as
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confirmation that we have developed a reasonabtienstanding of
both the structure of texts, insofar as their tstteriability distribution
is in question, and of the working of the LSC stts.
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