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ABSTRACT

The detection of temporal entities within natural language texts is
an interesting information extraction problem. Temporal entities
help to estimate authorship dates, enhance information retrieval
capabilities, detect and track topics in news articles, and aug-
ment electronic news reader experience. Research has been per-
formed on the detection, normalization and annotation guidelines
for Latin temporal entities. However, research in Arabic lags be-
hind and is restricted to commercial tools. This paper presents a
temporal entity detection technique for the Arabic language us-
ing morphological analysis and a finite state transducer. It also
augments an Arabic lexicon with 550 tags that identify 12 tempo-
ral morphological categories. The technique reports a temporal
entity detection success of 94.6% recall and 84.2% precision, and
a temporal entity boundary detection success of 89.7% recall and
90.8% precision.

INTRODUCTION

This paper considers the problem of extracting temporal entities from
Arabic text documents. Temporal entities are text chunks that express
or infer temporal information. Some entities represent absolute time and
dates such as 07/17/2011 or 2010 H.

�
@ 	á Ó � ÓA

	
mÌ'@ ālh

˘
āms mn ↩̄ab

2010 (August 5, 2010). Some entities represent relative time such as
ÐAK



@

�
é�Ô

	
g YªK. b↪d h

˘
mst ↩ayām (after five days). Other entities represent

temporal quantities such as AÓñK

14 é

�
JÊ¢« ↪t.lth 14 ywmā (his vacation

is 14 days).
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Industry tools that extract temporal entities from Arabic texts ex-
ist [1,2,3]. However, the techniques underlying these tools have not been
disclosed and evaluated academically yet. We present the Arabic tempo-
ral entity extractor using morphological analysis (ATEEMA). To the best
of our knowledge, ATEEMA is the first open-source tool to perform the
task of temporal entity extraction.

Temporal entity extraction from text includes the task of identifying
the temporal chunks of text and then the task of normalizing a temporal
chunk into a time quantity structure. Temporal entity recognition detects
expressions that express time concepts. Temporal entity normalization
understands the temporal chunck and extracts from it a time structure so
that 1900 1900, Qå

�
�« ©�A

�
J Ë @

	
àQ

�
® Ë@ ālqrn āltās↪ ↪̌sr (the nineteenth

century), and XCJ
ÖÏ @ YªK.
�
é

JÒª�

�
�ð

	
Ë


@ ↩alf wts↪m↩yt b↪d ālmylād (one

thousand nine hundred after Christ) all have one normalized canonical
form. Ultimately, one may want to store the normal form in a database
and process it later.

Research on temporal entity extraction in those languages that use
Latin alphabet, such as English, German, French, or Spanish, uses local
grammars, finite state automata [4,5,6,7,8,9,10], and neural networks [11]
to detect temporal entities. These techniques do not work well directly
for Arabic due mainly to the rich morphology and high ambiguity rate of
Arabic.

This paper focuses on the task of temporal entity recognition. We will
target temporal entity normalization in future work. ATEEMA uses Ara-
bic morphological analysis with part of speech (POS), gloss tagging, and
augmented temporal tagging to capture morphological temporal features
of Arabic text. ATEEMA passes the temporal morphological features to
a knowledge-based finite state transducer that captures temporal entities
and detect their boundaries.

In this paper we make the following contributions. (1) We present
a novel technique for temporal entity extraction from Arabic text based
on morphological analysis and finite state transducers. (2) We augment
an Arabic lexicon with 550 temporal morphological tags that identify 12
separate temporal categories. And (3) We provide the first open source
temporal entity extractor for Arabic.

Motivation

In this section we discuss several interesting applications that depend on
temporal entity extraction to motivate our work. The detection of time
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stamps from the content of a digital document rather than its meta-data,
such as the last modification and the creation dates of a file, is of interest
to the research community. Li et al. from Microsoft filed a patent for their
application that extracts authorship dates. They hypothesize that the last
modification date of a document is not representative of its date of gener-
ation as documents may be uploaded or copied to collaborative websites
and the meta-date gets changed to the upload date, which is rarely signif-
icant [11].

The work in [5] considers the problem of automatic assignment of
event-time periods in documents such as newspaper articles, medical re-
ports and legal documents to facilitate documemt retreival. Time periods
of the events under consideration in a document may be of higher impor-
tance than the date of the writing of the document.

Extraction of temporal entities from news articles combined with a
user profile can help augment the articles with information of interest
to the user [4]. For example, the extracted temporal entities can form
a navigation timeline that refers to other articles of relevance, and also
help augment the articles with answers to queries such as “Where were
I when the event took place?”, and “What other events took place at the
same time in my neighborhood?”.

German researchers developed an appointment scheduling via emails
(COSMA) application based on temporal entity extraction that takes as
input the electronic calendar of several parties, automates the time con-
suming task of scheduling meetings, and reduces the number of corre-
spondence needed to agree on a time [12].

When time entities are extracted, other data mining techniques can
discover useful relationships such as the recognition of frequent temporal
patterns in newspapers [13], the discovery of interesting events from time
varying features in the news corpus [14], and the detection and tracking
of new evolving events in the news [15].

Other benefits of temporal extraction include the comparison of par-
allel accounts and narrations of the same events such as several history
books that address the same periods. With temporal entity extraction one
can automatically check and detect historical inconsistencies if they ex-
ist. Extracted temporal entities can help to sort several different accounts
of the same or similar events into a timeline. This can automate merging
complementary and partial accounts of the same events. This analysis,
such as merging the several narrations of the Bible, was performed man-
ually.
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Background

In this section we briefly describe morphological analysis, finite state
transducers, and local grammars that are used to extract temporal enti-
ties from text.

Morphological analysis. Morphology considers the composition of
a word from several morphemes. A morpheme is a stem or an affix. An
affix is a prefix, suffix, or an infix. Prefixes and suffixes are attached to
the beginning and end of the word respectively; while infixes introduce
changes within the stem. A morpheme is associated with several tags such
as part of speech (POS) and gloss tags. Words result from the concate-
nation of compatible morphemes. Morphological analysis helps to group
together words which express similar notions such as ,QîD

�
� @ , 	áK
QîD

�
� ,QîD

�
�

QîD
�
�B@ , 	áK
QîD

�
�Ë @ that all share a common stem with a gloss tag of ‘month’,

and have affixes with useful glosses such as plural, dual, and definite
article Ë @ indicators.

Morphological analysis is is used in techniques that detect Arabic
named entities such as proper names [16,17]. It is key and necessary in
Arabic entity recognition due to the morphological richness of Arabic.
For instance, consider the stem ZAî

�
D
	
K @

↩intihā↩ (end) with the the suffix é

-h (it). Both variations é

KAî

�
D
	
K @

↩intihā↩ih and è


ðAî

�
D
	
K @

↩intihā↩oh are legal

based on the context. In addition, morphology isolates clitics such as
	

¬

fa (so) and ð wa (and) from other morphemes as in ÐñJ
Ë @ð wa-āl-yawm
(and + today).

Local grammars. Local grammars have been used to extract en-
tities from text [4,5,7]. Local grammars are lexical and syntactic con-
straints expressed in regular expressions that precisely define the local
neighborhood and context of an entity. The rules ignore the rest of the
context such as the complete sentence, paragraph, and document. Local
grammars simplify the detection of target entities when the entities can
be expressed by local small scope rules. They relieve the user from the
task of modeling the full language and the expense of understanding the
whole context [18].

A local grammar for temporal English expressions includes several
rules such as (Num ≤ 12) "in the afternoon" that can detect “five
in the afternoon”, (Num ≤ 12) "p.m" that can detect “5 p.m.”, "half
past" (Num ≤ 12) that can detect “half past one”, and (Num ≤ 23)

‘‘:’’ (Num ≤ 59) that can detect “5:44”. The quoted subexpressions
within the rules are frozen expressions and Num captures numbers such as
‘one’, ‘two’, ‘1’ and ‘2’ [19].
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Fig. 1. ATEEMA flow diagram

Finite state transducers. A finite state transducer (FST) is a finite
state machine with an input and an output tape. FSTs differ from finite
state automata (FSA) in that they have an output tape while FSAs have
accept states instead.

Formally, an FST is a tuple M = (S, S0, Σ, Γ, δ) where S is the
set of states, S0 ⊂ S is the set of initial states, Σ is the input alphabet,
Γ is the output alphabet, and δ ⊆ S × (Σ ∪ {ε}) × (Γ ∪ {ε}) × S is
the transition relation. FSTs have been used extensively in text mining
applications where the input is the text and the output is the delimiters of
a chunk of text with an associated class [20]. FSTs are attractive due to
their efficiency and ease of use.

ATEEMA

The diagram in Figure 1 shows how ATEEMA works. ATEEMA takes as
input Arabic text and returns temporal entities therein. ATEEMA passes
the input text string to an inhouse Arabic morphological analyzer. Both
the analyzer and ATEEMA are both available as open source tools. The
analyzer processes the input text and whenever it identifies a morpheme,
it calls ATEEMA back with the current solution context and the found
morpheme. Note that several morphological solutions may exist for the
same input string.

The ATEEMA call back receives the solution context and the mor-
pheme with the associated POS and gloss tags. It either adds the mor-
pheme to a sequence of unresolved morphemes, or resolves the mor-
phemes and produces a temporal category as input to the finite state
transducer (FST). Note that this is necessary since words in the Arabic
language are not necessarily separated by white space delimiters and thus
one white space delimited token may contain several words and produce
several categories.

The finite state transducer detects the temporal entities. ATEEMA
uses a manually built finite state transducer to accomodate for (1) mor-
phological variations which are frequent in Arabic text, and (2) ambigu-
ous morphological solutions since Arabic is at least one order of mag-
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Table 1. Temporal categories added to the lexicon of the Arabic morphological
analyzer.

TIME NUM TIME PREP
Tag unit relative range nominal events digit word range point relative approximate range
Count 32 55 16 94 10 20 152 - 83 54 12 22
Total 207 172 171

nitude more ambiguous than Latin languages. For example, consider the
following morphological variations of entities related to temporal expres-
sions.

– Q�

	

g�

�
@ ,Q

	
k� @ð

�
@ ,Q

	
k� @ ,Q

	
k�

�
@ ↩̄ah

˘
ir, āh

˘
ir, ↩aawāh

˘
ir, ↩aah

˘
iyr (last)

– Z @Y
�
J�
�
K. @

, ø
�
Y

�
K.

, 
ð

�
Y

�
K.

,

@
�
Y

�
K.

, Z
�
Y

�
K. bad↩, bad↩a, bad↩w, bad↩y, ābtidā↩ (start)

Also consider the ambiguous word 	á�

	
J
�
K @

↩it
¯
nyn which means Monday

and the number two. Techniques that use local grammars and work for
Latin languages are restricted to regular expressions with frozen phrases
and fail upon morphological variations. We believe that our approach can
be extended to other morphologically rich languages as well as Latin lan-
guages to provide better results.

ATEEMA targets the detection of temporal expressions within the
bounds of their temporal context. Consider the following examples.

– 2003 / 9 / 4 (4/9/2003): this is a straight forward date with no tem-
poral context.

– YªK.
2003 / 9 / 4 ( b↪d after 4/9/2003): this is a date with a temporal

preposition.
– 2003 	

àA��

	
K ú




	
¯ fy nysān 2003 , (in April 2003): this is a partial

date with a temporal preposition.
– QîD

�
�

@

�
éªK. P


@ ñm�

	
' PðQÓ YªK. b↪d mrwr nh. w ↩arb↪t ↩ašhr (after about

four months passed): this is an approximate ( ñm�
	
') range ( PðQÓ) with

a temporal preposition.
– ú



æ

	
�A ÖÏ @

	
àQ

�
® Ë@

�
HAJ


	
J �


	
K A Ö

�
ß ú




	
¯ fy t

¯
mānynyāt ālqrn ālmād. y , (in the

eighties of the last century): this is a temporal expression where the
range is inferred from the suffix �

HAJ
� of �
HAJ


	
J�


	
K AÖ

�
ß.

Temporal categories. The Arabic morphological analyzer produces
morphemes with POS and gloss tags. ATEEMA is interested in temporal
and numerical morphological features as well as temporal prepositions
which occur within a neighborhood of temporal expressions. For this pur-
pose we augmented the tags of the morphological analyzer to report the
categories presented in Table 1.
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Category TIME denotes explicit temporal tokens. They are infered
from time units such as �

é
�
®J


�
¯X dqyqt (minute) and �

é«A� sā↪t (hour),
relative entities such as Y

	
« ġd (tomorrow), nominal entities as in day

and month names, range entities as in seasons, and referential entities
as in important events ø



Qj. ë hǧry . Category NUM denotes numerals

and refers to digits or words such as 	á�

	
K AÖ

�
ß t

¯
mānyn (eighty), �

éªK. P

@

↩arb↪t (four) and 4 4 . The prefixes and suffixes of these numbers may
divide them into subcategories denoting range as in �

HAJ

	
J�


	
K AÖ

�
ß. Category

TIME PREP denotes temporal prepositions that precede or follow time
expressions. They are divided into relative prepositions such as ÉJ.

�
¯ qabil

(before) and
	
Y

	
JÓ mnd

¯
(since), approximate prepositions such as ñm�

	
'

nh. w (about), range prepositions such as ÈC
	

g h
˘

lāl (during), and point
prepositions such as ú




	
¯ fy (in). The Table reports also the number

of lexicon items we tagged with temporal tags. We identified 550 lexicon
entries out of 82,170 entries and annotated them with temporal tags. Note
that these entries are stems and affixes and can be concatenated with other
entities to generate more possible temporal tokens.

ATEEMA associates an order amongst the temporal morphological
annotations and categories. ATEEMA uses the order to associate com-
plex temporal entities with a tag that is the result of the concatenation of
the morphological temporal tags and categories. This produces a semi-
canonical temporal form that can be used in practice as a normalized
temporal form.

The finite state transducer

Figure 2 shows a high level overview of the finite state transducer. The
FST takes the detected temporal categories as input and also considers
two state variables iwt and iwm that count the number of temporal cat-
egories met while in the Time and Maybe Time states, respectively. The
actual number of states is proportional to θt and θm which are two thresh-
olds that define the upper limits for the iwt and iwm counters, respec-
tively.

The initial state Nothing denotes that no temporal entity is being pro-
cessed. The Maybe Time state denotes the cases where the FST is not yet
sure whether the currently processed text is a temporal entity. Finally the
Time state denotes that the FST has recognized a temporal entity and is
in the process of computing its boundary.

The transition to the Maybe Time state happens when the FST encoun-
ters prepositions or numbers but no direct time tokens. Once it detects a
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Nothing

Maybe 

Time

Time

!NUM ∧ !TIME_PREP
 ∧ !TIME  ∧ iwm ≥ θm

NUM  ∨ 
TIME_PREP

TIME

!NUM ∧ !TIME_PREP
 ∧ !TIME  ∧ iwt ≥ θt

TIME

NUM  ∨ 
TIME_PREP

!NUM ∧ !TIME_PREP
 ∧ !TIME  ∧ iwm< θm

!NUM ∧ !TIME_PREP
 ∧ !TIME  ∧ iwt < θt

!NUM ∧ 
!TIME_PREP

 ∧ !TIME

iwm++

iwm= 0

iwm = 0

sp = pos

ep = pos

sp = pos

ep =pos

Time[i] = (sp, ep)

i++

NUM ∨ TIME_PREP
 ∨ TIME

ep =pos

iwt++

Fig. 2. FST for temporal entity extraction

direct time token, the FST transitions to the Time state. This might happen
also directly from the Nothing state.

The two thresholds θm and θt encode the flexibility and tolerance of
ATEEMA to recognize the several different temporal classes. The θm
threshold specifies the number of non-temporal tokens that ATEEMA
tolerates within a temporal entity. The threshold θm is tested before a
transition takes place from the Maybe Time state to the Nothing state. In
other words, if the FST suspected a temporal entity because of an indi-
rect temporal feature (NUM or TIME PREP), then the FST will give up
that entity if it meets more than θm non-temporal tokens before meeting
a direct temporal feature. For example, the word 	á�
�Ô

	
g in the text ©

	
¯X

QÒ
�
JË @ð

�
é¢

	
JmÌ'@ ø



Q�
�

�
��
Ë AÒëPX

	á�
�Ô
	

g df↪h
˘

msyn drhmā lyštry ālh. nt.t wāltmr
(He paid fifty Durhams to buy flour and dates) will activate a transition
to a Maybe Time state but the rest of the text will drive the FST back to
the Nothing state.

The θt threshold expresses the number of non-temporal words that
might intervene between two temporal words in the same temporal entity.
For example, the text �

H@ñ
	
J�Ë@ I. ª�


@ 	áÓ �Ô

	
gð

	
¬Aj. « QîD

�
�

@

�
éªK. P


@

YªK. b↪d ↩arb↪t ↩ašhr ↪̌gāf wh
˘

ms mn ↩as. ↪b ālsnwāt (after four bad months
and five of the hardest years) contains non-temporal words (

	
¬Aj. « and

I. ª�

@ 	áÓ) that θt tolerates.

In Figure 2, actions that are performed on the different transitions
are shown inside boxes near the transitions. The actions include setting
the values of the counters iwm, iwt, and i. The counter iwm denotes the
number of non-temporal tokens met within the Maybe Time state. The
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Fig. 3. Screenshot from ATEEMA.

FST increments iwm if it was in the Maybe Time and a non-temporal
word was detected, and resets it when entering the Maybe Time state or
when a temporal word is detected. The counter iwt denotes the number of
non-temporal words met within the Time state and is updated in a similar
fashion to iwm.

The counter i is the index of the current temporal expression. Once
a temporal expression is fully detected, the FST appends it to the Time

structure and increments i. The actions also include setting the the start sp
and end ep positions of the temporal expression. The symbol pos refers
to the current position in the text. Figure 3 shows the output of ATEEMA
with context sensitive coloring of the extracted temporal entities.

Heuristic optimizations

After a first run of ATEEMA, we made few observations that led us to
introduce the following disambiguation heuristics.

Heuristic 1. We ignore the word ÐAªË@ āl-↪̄am (the year) if it appears in
the definite form (i.e. ÐAªË@ āl-↪̄am instead of ÐA« ↪̄am) and no other tem-
poral words or prepositions appeared next to it. This is mainly because in
newspapers, it is common to find the word ÐAªË@ āl-↪̄am (the year) with a
completely non-temporal meaning (i.e. general, common, and public) as
in ÐAªË@ ÈAÖÏ @ āl-māl āl-↪̄am (public money) and ÐAªË@ ø





@QË @ āl-ra↩yi āl-↪̄a-

m (public opinion). The same rule applies to �
éJ


	
K A

�
JË @ āl-t

¯
āniyat (second)

which may mean either a second rank (2nd) or the time unit (second).
Heuristic 2. The word Yg


B@ āl-↩ah. ad has both ‘the one’ and ‘Sun-

day’ meanings. When used in the indefinite form (i.e. Yg

@ ↩ah. ad), we

interpreted the word as a number. When used in the definite form (i.e.
Yg


B@ āl-↩ah. ad), we interpreted the word as a day of the week.
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Table 2. Temporal entity extraction accuracy results for Safir and Akhbar news-
papers.

Detection Boundary Statistics
recall precision F-score recall precision F-score words entities

w/o Safir 1 0.944 0.648 0.768 0.924 0.922 0.923 5,783 72
heuri- Safir 2 0.926 0.680 0.784 0.829 0.881 0.854 13,457 108
stics Akhbar 0.954 0.692 0.802 0.899 0.926 0.912 28,688 503

0.949 0.685 0.796 0.890 0.918 0.904 47,928 683
with Safir 1 0.944 0.850 0.895 0.924 0.931 0.928 5,783 72
heuri- Safir 2 0.926 0.813 0.866 0.829 0.881 0.854 13,457 108
stics Akhbar 0.950 0.847 0.895 0.908 0.926 0.917 28,688 503

0.946 0.842 0.891 0.897 0.919 0.908 47,928 683

RESULTS

Similar to the literature, we chose newspapers as our evaluation cor-
pora. Temporal entities are abundant in newspaper texts. We evaluated
ATEEMA against text chosen arbitrarily from two issues of the Lebanese
Assafir newspaper 1 and one issue of the Lebanese Al-Akhbar newspa-
per 2. Table 2 shows the results for Safir 1, the youth section of the Safir
18/5/2011 issue, Safir 2 cultural section of the Safir 20/5/2011 issue, and
Akhbar, the politics section of the Akhbar 17/6/2011 issue. As shown in
the Statistics columns of Table 2 the three data sets consisted of about 48
thousand words and contained about 680 temporal entities. We evaluated
the accuracy of ATEEMA by comparing the output of ATEEMA against
a manually tagged version of the text.

We used recall and precision as our evaluation metrics. We report
results for the detection and for the boundaries of temporal entities. De-
tection accuracy refers to the success of ATEEMA in detecting the tem-
poral entities in the text of the newspaper. Boundary accuracy refers to
correctly reporting the start and end positions of the extracted temporal
entity in text.

Detection recall refers to the fraction of the temporal entities cor-
rectly detected against the total number of temporal entities available.
Detection precision refers to the fraction of correctly detected expres-
sions against the total number of extracted temporal entities. The same
applies to boundary recall and precision measures. Intuitively, the preci-
sion measure denotes whether the system generated false positives.

1 available online at www.assafir.com
2 available online at www.al-akhbar.com
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The upper rows of Table 2 show that ATEEMA without the heuristics
has a high recall (about 95%) but a relatively low precision (about 69%)
on the average. This means that ATEEMA detects almost all temporal
expressions due to the flexible nature of the FST which supports captures
most temporal expression structures.

The expressions ATEEMA missed such as �
é J
 Ê ë


B@ H. Q mÌ'@ ÈC

	
g

�
éJ


	
K A

	
JJ. ÊË @ h

˘
lāl ālh. rb āl↩ahlyt āllbnānyt (during the Lebanese civil war), and

	á�
 ËQK.
	
à@PYg. PA J
 î

	
E @ YªK. b↪d ānhyār ǧdrān brlyn (after the collapse

of the walls of Berlin) needed a deep understanding of the text under
consideration that is hard to automate.

ATEEMA also scored 89% and 91.2% for the boundary recall and
boundary precision respectively. This means that ATEEMA is capable of
detecting the great majority of the temporal entities without significantly
over-approximating or under-approximating the boundaries of the entity.

The heuristics improved the precision of ATEEMA with practically
no loss in the recall metrics as shown in the lower rows of Table 2.
ATEEMA achieved more than 84% precision without extensively enu-
merating all the temporal expression structures. This is mainly due to the
fact that temporal features such as time, numbers, and time prepositions
occurring in a neighborhood of text are precise at capturing temporal en-
tities when used with an adequate morphological generalization.

We observed that more than 60% of the detected entities exhibited
one or more morphological variations. These entities would not have been
detected without the use of the morphological analyzer.

ATEEMA reported false positives in cases similar to � Ó

A K.

	á m�
	
'

úÍ@


�
ék. A mÌ'@ nh. n b↩ams ālh. āǧt ↩ilā (we desperately need) since the mor-

phological analyzer reported a temporal morphological feature for �Ó

@

as it also means yesterday. Local grammars can not address such failures
as well.

RELATED WORK

Much research considered the detection of temporal entities in Latin text
especially English [4,5,6,7,8,9,10,11]. Only commercial tools exist with
temporal entity support for the Arabic Language [1,3,2].

Gross [21] studied collocations and lexically frozen phrases that can
be modeled using formal grammar rules and proposed methods to repre-
sent the rules with finite state automata efficiently. A frozen phrase is “a
phrase in which certain parts cannot be altered. These parts are subject
to restricted syntactical variations without affecting the original meaning
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or function of the expression” [22]. Later Matthieu Constant uses local
grammars for text parsing [19], and presented a finite state automaton
that parses date expressions and that is able to capture expressions such
as “five in the afternoon”, “5 p.m.”, and “half past one”.

Llidó et al. [5] presented techniques to extract and normalize tem-
poral entities using local grammars. The extraction phase uses a shallow
semantic-syntactic parser. The normalization phase encodes the semantic
meaning of the extracted phrases in terms of a hierarchical formal time
model that supports temporal points, intervals, and relative temporal en-
tities.

Koen argues that local shallow parsing is better suited for temporal
entity extraction and that full grammar parsing can improve the results
if applied afterwards to understand the context of located temporal enti-
ties [4]. He reported about 90% recall and precision on extracting date,
time, interval and velocity entities. He reported 60% recall on extracting
the less useful and less frequently occurring age entities. His work fills
missing information in partial temporal entities with a reference extracted
temporal entity such that the publication or transmission date of an arti-
cle. It produces false results when a paragraph discusses events that took
place at another date.

The Fact Extractor Workbench [23] uses regular expressions to model
local grammars along with optimized capabilities such as caching. The
work in [8] uses the IDE to extract temporal and other entities. It caches
detected entities, uses the cached entities to complete partial entities, and
presents better results for relative dates than that of [4]. However, when
the detection of reference temporal entities is non-trivial and needs an
understanding of the semantics of the document both approaches fail.

ATEEMA is similar to the work of Gross [21] and Constant [19] who
encode their local grammars in efficient state machines. The ATEEMA
transducer differs in that it is not grammar based, it does not use frozen
phrases, and in that ATEEMA can capture temporal entities with varying
structures without formally defining each structure.

ATEEMA differs from the rest of the local grammar based approaches
in that it uses a manually optimized FST that takes as input a sequence
of morphological features. Local grammars expressed in regular expres-
sions have a less expressive power, are less tolerant to morphological
variations, and are automatically translated into non-deterministic finite
state machines that may be complex and of large size.

An information extraction core system SMES [10] addresses tempo-
ral entity extraction from German texts. SMES consists of a tokenizer
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that identifies fragment patterns, a lexical morphological analyzer that
supports compound expressions, and a shallow parser based on finite-
state automata that parses the text to extract temporal entities [12]. It
reports a recall of 77% and precision of 88% when evaluated against a
corpus of monthly reports about the ‘German IFOR mission in former
Yugoslavia’ [10].

COSMA [12] builds on SMES to provide a system for appointment
scheduling via Emails. COSMA resolves partial dates and relative tempo-
ral expressions by relating the underspecified expressions to their context.
The context of an expression includes text of the email, previous email
messages in the same conversation, and the temporal meta-data of the
conversation. COSMA considers the contextual hierarchy in order until
it resolves the expression. If the process fails, COSMA asks for clarifica-
tion.

ATEEMA is similar to SMES [10] and COSMA [12]. It differs in that
it uses an FST to detect a neighborhood for temporal entities. It does not
use frozen words and it does not enumerate several regular expressions
that extensively capture temporal entities since these are hard to exten-
sively cover in Arabic because of the rich morphology.

Time Calculus for Natural Language (TCNL) [24] extracts and nor-
malizes English temporal entities in scheduling-related emails. The ex-
pression ‘{|1mon|@{>= }}’ expresses the phrase ‘the coming Mon-
day’. The symbol ‘ ’ denotes the temporal anchor to which this relative
expression relates; e.g. the timestamp of the email. The Temporal Ex-
pression Anchorer (TEA) subsystem determines the anchor and disam-
biguates the expression using the context, e.g. the tense of the nearest
verb. Its favors the most recent event as the anchor of subsequent ex-
pressions. The system reported an accuracy of about 80% in normalizing
correctly recognized temporal expressions.

Temporal entity detection for Arabic. The Rosette Entity Extrac-
tor by Basis Technology supports extracting entities including dates for
13 languages including Arabic [1]. Rosette is based on aided statistical
machine learning where a computational linguist provides Rosette with
information about contextual features to define an entity and a tagged
learning set. Rosette then builds a statistical model for extracting the en-
tity. This methodology is language independent and is easily extendable
to a large number of languages and entity types including Arabic tempo-
ral concepts.

BBN IdentiFinder Text Suite is a named entity extraction tool that
supports extraction of Arabic date and time expressions [2]. IdentiFinder
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seems to be based on statistical learning methods. Currently it supports
English, Arabic, and Chinese. However, the methods used in this tool are
language-independent just as Rosette.

Arabic Named Entity Extractor (ANEE) from COLTEC supports time
and date [3] entity extraction. No information is disclosed about the un-
derlying techniques except that it is based on linguistic NLP techniques
along with statistical methods and claims to be unrestricted by simple
look-up tables or rigid rules.

Up to our knowledge, ATEEMA is the first knowledge based tem-
poral entity extractor for the Arabic language and unlike its commercial
counterparts [1,2,3], ATEEMA does not use statistical learning.

Comparing results to related work

On a similar genre of evaluation datasets, namely newspapers, ATEEMA
working against an Arabic dataset reported higher recall (95%) than [4]
(90%) working against an English dataset. ATEEMA reported less preci-
sion (84% compared to 90%) resulting in about the same F-score without
the need to extensively enumerate all possible temporal expression struc-
tures. Note that Arabic is much harder to tackle than English.

A more relevant comparison is to compare ATEEMA to the German
temporal entity extractor where morphological analysis is also key [10].
ATEEMA working against an Arabic dataset scored 18% extra recall
compared to [10] (77%) working against a German dataset and just 4%
less precision (84.2% compared to 88%) difference which amounts to a
7% higher F-score for ATEEMA.

CONCLUSION

We presented ATEEMA, the first open source tool for Arabic tempo-
ral entity extraction. ATEEMA extracts temporal morphological features
from Arabic text, classifies the features into temporal categories, and
passes the features to a finite state transducer (FST). The FST detects
temporal entities and uses tolerance parameters to detect the boundaries
of the temporal entities. ATEEMA achieved very good results compared
to counterpart tools over a set of newspaper text selected arbitrarily.

In the future we will explore extending ATEEMA to normalize the
temporal entities. We will also explore applying the same technique to
other morphologically rich languages and to Latin languages as well.



ARABIC TEMPORAL ENTITY EXTRACTION 135

REFERENCES

1. Cohen, S.: Entity extraction enables “discovery”. Technical report, Basis
Technology (2006)

2. Technologies, B.: BBN IdentiFinder Text Suite [Online; accessed 22-April-
2010].

3. COLTEC: Anee: Arabic named entity extraction. Technical report, Com-
puter & Language Technology (2007)

4. Koen, D.B., Bender, W.: Time frames: temporal augmentation of the news.
IBM Systems Journal 39 (July 2000) 597–616
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