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ABSTRACT  

In this paper we present a two stage constraint based approach 

to Telugu dependency parsing. We define the two stage and 

show how different Telugu constructions are parsed at 

appropriate stages. The division leads to selective identification 

and resolution of specific dependency relations at the two 

stages. We then discuss the ranking strategy that makes use of 

the S-constraints to gives us the best parse. A detailed error 

analysis of the output of core parser and the ranker helps us to 

flesh out the current issues and future directions.  
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1   INTRODUCTION 

There has been a recent surge in addressing parsing for 

morphologically rich free word order languages such as Czech, 

Turkish, Hindi, etc. These languages pose various challenges for the 

task of parsing mainly because the syntactic cues necessary to identify 

various relations are complex and distributed [14, 1, 10, 11, 13, 12, 6, 

9, 5]. Data driven parser performance [7] show that many of these 

complex phenomena are not being captured by the present parsers. 
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Constraint based parsers have been known to have the power to account 

for difficult constructions and are well suited for handling complex 

phenomena. Some of the recent constraint based systems have been 

[20, 24, 36, 37, 31, 28, 23, 17].  

In this paper we present a two stage constraint based approach to 

Telugu dependency parsing based on the parser proposed by [3, 4, 35]. 

We begin by quickly summarizing the parser design and follow it by 

describing how different Telugu constructions are parsed at appropriate 

stages. We will see that this division leads to selective identification 

and resolution of specific dependency relations at the two stages. We 

then discuss the ranking strategy that makes use of the S-constraints to 

gives us the best parse. A detailed error analysis of the output of core 

parser and the ranker helps us to flesh out the current issues and future 

directions. 

This paper is arranged as follows: Section 2 gives a quick overview 

of the two-stage constraint based hybrid parser (CBHP); Section 3 

explains in details how we handle different Telugu constructs in two 

stages; Section 4 describes the results of the core parser and makes 

some observations on these results. In Section 5 we describe the 

ranking strategies, followed with results in Section 6. We conclude the 

paper with future directions in Section 7. 

2  OVERVIEW OF THE TWO-STAGE CONSTRAINT BASED HYBRID 

PARSER (CBHP) 

CBHP [3, 4] adopts a hybrid approach to dependency parsing. A 

constraint based approach is supported by a controlled statistical 

strategy to achieve high performance and robustness. The overall task 

of dependency parsing is attacked using modularity, wherein specific 

tasks are broken down into smaller linguistically motivated sub-tasks. 

Figure 1 shows the overall design of CBHP. Below we quickly 

summarize CBHP: 

 

(1) Two stages during the sentence analysis phase: The parser tries to 

analyze the given input sentence, which has already been tagged and 

chunked,1 in two stages; it first tries to extract intra-clausal
2
 

                                                           
1   POS and chunk tagging scheme for Indian Languages is discussed in [38]. 
2  A clause is a group of word such that the group contains a single finite verb 

and its dependents. We must note here that these dependents cannot 



A CONSTRAINT BASED HYBRID DEPENDENCY PARSER FOR TELUGU 55 

dependency relations. In the second stage it then tries to handle more 

complex inter-clausal relations such as those involved in constructions 

of coordination and subordination between clauses. 

 

(2) H-constraints: Both 1st and 2nd stage use linguistically motivated 

constraints. These H- constraints (Hard constraints) reflect that aspect 

of the grammar which in general cannot be violated. H-constraints 

mainly comprised of structural and lexical knowledge of the language. 

 

(3) S-constraints and Prioritization for parse selection: The sentence 

analysis layer (cf. figure 1) can potentially produce more than one 

parse. These parses are then ranked by a prioritization component using 

S-constraints(Soft constraints). S-constraints are the constraints that are 

used in the language as preferences. Unlike the H-constraints that are 

derived from a knowledge base and are used within the core parser 

during derivation, S-constraints have weights assigned to them and are 

used exclusively during prioritization. These weights are automatically 

learnt using a manually annotated dependency treebank. 

3   CBHP FOR TELUGU 

[3], [4] have proposed CBHP for Indian languages. It has however been 

tested only for Hindi. We use the same machinery that was used by 

them to handle Telugu. We first describe the different types of relations 

the parser currently handles in the two stages, following which we 

briefly mention H-constraints for Telugu CBHP.  

3.1 RELATIONS HANDLED IN STAGE 1 

In stage 1 we handle mainly intra-clausal relations. These relations 

represent: 

 

                                                                                                                    
themselves be finite verbs. Also, subordinating conjunctions and finite verb 

coordinating conjunctions are also not treated as part of a clause. And 

therefore, a sentence such as ‘John said that He will come late’ has 3 units; 

(1) John said, (2) that, and (3) He will come late. Similarly, ‘John ate his 

food and he went shopping’ has 3 units; (1) John ate his food, (2) and, and 

(3) he went shopping. 
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Fig. 1. Design of CBHP 

 

i. Argument structure of the finite verb 

ii. Argument structure of the non-finite verb 

iii. Adjuncts of finite and the non-finite verb 

iv. Noun modifications 

v. Adjectival modifications 

 

Using example (1) below we describe how the parser handles a 

simple declarative sentence. 

 

(1) wulasi     golilu       mAnesiMxi 

‘Tulasi’  ‘tablets’    ‘stopped using’ 

‘Tulasi stopped using the tablets’ 

 

CBHP begins by constructing the constraint graph (CG) for the 

above sentence. A constraint graph shows all the potential arcs that can 

exist between the heads and their corresponding dependents. This 
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information is obtained from the demand frame of the head. According 

to the frame the verb can take k13 and k2 as mandatory children with 

null postpositions. Figure 2 shows that the demand frame for 

mAnesiMxi is obtained from basic demand frame of root verb mAnu 

and the null frame of suffix –esiMxi (which represent the tense, aspect 

and modality (TAM)). The basic demand frame for a verb or a class of 

verbs specifies the suffix, category, etc. permitted for the allowed 

relations for a verb when the verb has the basic TAM label. In Figure 

3(a) we show the constraint graph that is constructed using the demand 

frame. The final parses are obtained by converting the CG into integer 

programming equations and using bi-partite graph matching [36, 37, 4]. 

Figure 3(b) shows the final parses obtained from the CG. Notice that 

we get two parses. This indicates the ambiguity in the sentence if only 

the limited knowledge base is considered. Stated another way, H-

constraints (in the form of demand frames) are insufficient to restrict 

multiple analysis of a given sentence and that more knowledge 

(semantics, other preferences, etc.) is required to curtail the 

ambiguities. We will see in Section 5 how we can obtain the best parse 

from these multiple parses. Notice also the presence of the _ROOT_ 

node. By introducing _ROOT_ we are able to attach all unprocessed 

nodes to it, ensuring that the output we get after each stage is a tree. 

 

 

Fig. 2. Final demand frame for mAnesiMxi shown in (c) is obtained 

from the basic demand frame of manu (a) and the transformation (b) 

which is NULL here. 

                                                           
3k1 can be roughly translated to ‘agent’, k2 can be roughly translated as 

‘theme’. CBHP follows the syntactic-semantic dependency labels proposed 

in [3]. 
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(a)                                                        (b) 

Fig. 3.  (a) Constraint graph for (1). (b) Final parses obtained from CG 

Example (2) is a slightly complex construction containing a non-

finite verb. Such sentences are also handled in the 1
st
 stage. 

 

(2) wulasi   rogaM        waggiMxani            golilu        mAnesiMxi. 

‘Tulasi’  ‘disease’     ‘having reduced-so’  ‘tablets’   ‘stopped using’. 

     ‘As the disease reduced, Tulasi stopped using the tablets’ 

 

We have already seen through (1) how a sentence with a finite verb 

like mAnesiMxi can be parsed. In (2) in addition to a finite verb we 

have a non-finite verb waggiMxani. Like last time we first get the basic 

demand frame of the non-finite verb waggiMxani. Basic demand 

frames always represent the argument structure of a verb with its 

default TAM (present, indefinite). When a new TAM appears with the 

verb, we transform the original frame to get the final frame that is 

accessed during the construction of the CG. Figure 4 shows this process 

clearly. Figure 5 shows the most appropriate final parse. 

3.2 RELATIONS HANDLED IN STAGE 2  

Stage 2 handles more complex inter-clausal relations such as those 

involved in constructions of coordination and subordination between 

clauses. Stage 2 handles the following relations:  

 

i. Clausal coordination 

ii. Clausal subordination 

iii. Non-clausal coordination 

iv. Clausal complement 
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Fig. 4. Basic Demand frame of waggu (a) is transformed by the 

transformation frame A_ani (b) giving us the final frame for 

waggiMxani shown in (c). 

2
nd

 stage functions similar to the 1
st
 stage, except that in the 2

nd
 stage 

the CG has very few nodes. This is because the 1
st
 stage parse subtrees 

are mostly not modified in the 2
nd

 stage and only those nodes that are 

relevant for 2
nd

 stage relations are considered. Take (3) as a case in 

point. 
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Fig. 5. Appropriate final parse 

 

(3) wulasi golilu  mAnesiMxi mariyu paniki velYliMxi 

    ‘Tulasi’ ‘tablets’ ‘stopped using’ ‘and’ ‘work’ ‘went’ 

‘Tulasi stopped using tablets and went to work’ 

 

Figure 7(a) shows the first stage parse for this sentence. We can see 

that the analysis of the two clauses is complete. The root of these 

subtrees and the conjunct mariyu are seen attached to the _ROOT_. 

Figure 6 shows the 2
nd

 stage CG for (3). Notice that only the two finite 

verbs and the conjunct are seen here. The relations identified in the 1
st
 

stage remain untouched. Figure 7(b) also shows the final parse for this 

sentence; notice that the outputs of the two stages are combined to get 

the final parse. Merging the 1
st
 stage and 2

nd
 stage is not problematic as 

the two stages are mutually exclusive.  

We must note here that for few cases such as (4) below, the 1
st
 stage 

output is revised. We follow the same principles as described in [35]. 

This mainly concerns case dropping in nominal coordinations. Example 

5 shows an example of clausal complement where the verb ceVppiMxi 

takes the clause headed by a complementizer ani, the complementizer 

in turn takes a clause headed by mAnesiMxi. Figure 8(a) and 8(b) shows 

the 1
st
 and 2

nd
 stage output of (5) respectively. The 2

nd
 stage CG can be 

seen in Figure 9. 

 

(4) wulasi  mariyu rama golilu mAnesAru. 

 ‘Tulasi  ‘and’ ‘Rama’ ‘tablets’  ‘stopped using’ 

 ‘Tulasi and Rama stopped using tablets.’ 
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(5) wulasi golilu  mAnesiMxi ani rama ceVppiMxi 

     ‘tulasi’ ‘tablets’ ‘stopped using’ ‘’ ‘rama’ ‘told’ 

      ‘Rama told that Tulasi stopped using tablets.’ 

 

Fig. 6. 2
nd

 stage constraint graph for (3) 

 

 

            (a)                                                  (b) 

Fig. 7. (a) Stage 1 and (b) Stage 2 parse output for (3) 

3.3 H-CONSTRAINTS 

As mentioned earlier H-constraints in CBHP mainly comprises of the 

lexical constraints. This as we saw in section 3.1 corresponds to the 

basic demand frame and the transformation frame. For Telugu CBHP 

we manually prepared around 460 verb frames and 95 transformation 

frames. The transformation frames handles various alternations that are 

brought in by non-finite and passive TAMs. High frequency verbs and 

tense, aspect and modality markers were extracted from the training 

data to prepare the frames. Similarly, other heads such as conjuncts 

were also extracted. Preparation of these frames took around 30 days. 
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(a)                                                          (b) 

Fig 8. Stage 1 and Stage 2 outputs for sentence (5) 

 
Fig 9. 2

nd
 stage CG for sentence (5) 

4   RESULTS AND OBSERVATIONS 

In this section we describe the data that was used for evaluation. We 

then give the oracle result of the core parser on this data, following 

which we discuss the results and the error analysis. The oracle parse for 

a sentence is the best available parse amongst all the parses of that 

sentence. It is obtained by selecting the parse closest to the gold parse. 

The oracle accuracy gives the upper-bound of the parser accuracy and 

gives some idea about its coverage. 
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4.1 DATA 

All the results in this paper are reported for Telugu. We use the Telugu 

data set that was released as part of the ICON Tools Contest 2010 [8]. 

The training data had 1300 sentences, development and test set had 150 

and 150 sentences respectively. Since the released data is a preliminary 

version of the treebank it had few errors. Certain relations related to 

experiencer verbs and verbs of movement have been corrected to report 

the results. The current parser does not handle ellipses and therefore all 

the sentences with NULL nodes have been removed to report the 

results. This data has 1119 training, 133 development and 127 test 

sentences. 
 

Table 1.  Overall parser oracle accuracy 

 LAS UAS LS 

Development 68.06 84.41 70.34 

Testing 65.33 84.14 66.60 

4.2 RESULTS 

Table 1 below shows the oracle accuracies of the parser for the 

development and testing data. We see that the UAS (unlabeled 

attachment score) for both test and development is very good; the 

accuracies for LAS (labeled attachment score) and LS (labeled score) 

however are not. In Table 2 we show the breakup of the results into 

intra-clausal and inter-clausal relations. We see that on an average the 

inter-clausal relations are being identified successfully, and the low 

LAS of Table 1 can be attributed mainly to the intra-clausal relations. 

 

Table 2.  Intra-clausal and Inter-clausal relation accuracy 

  LAS UAS LS 
     

Development Intra-clausal 59.83 82.82    63.15 

 Inter-clausal 85.89 87.73 85.89 

     

Test Intra-clausal 57.92 85.11 59.87 

 Inter-clausal 79.63 82.09 79.63 
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Further analysis of the results showed why the oracle LAS is not very 

high: 

1. Coverage of H-constraints: As mentioned earlier we are currently 

using around 460 frames in the parser. Close to 30% of all the 

verbs in the test and development data were unseen. The parser 

uses a default strategy for unseen verbs; not surprisingly, this does 

not always work well. Similar observation has been reported in the 

literature for all the parsing approaches in general [22].  

2. Unhandled Relations: There are still some relations that the parser 

doesn’t handle. Complex predicate is one such case. Automatic 

identification of such predicates is a challenging task as most 

diagnostics proposed in the literature are behavioral [39, 32]. There 

has been some work in automatically identifying complex 

predicates for Hindi [25, 30]; we need to try and see if these 

methods can help us too. Ellipses is another phenomena that the 

parser doesn’t handle. In Telugu, sometimes even the main 

arguments of the verb might go missing and in such cases the 

parser might assign this relation to some other word with the same 

property.  

3. Morphological errors and ambiguous TAMs: A small portion of 

errors are caused when the morphological analyzer gets the root 

form of a verb wrong. In such a case, CBHP will pick incorrect 

verb frame. Also, in Telugu certain TAM (tense, aspect and 

modality) labels are ambiguous and will affect transformations. 

5   S-CONSTRAINTS AND PRIORITIZATION    

It was clear from Sections 2 and 3 that the core parser that uses H-

constraints produces multiple parses. S-constraints are those constraints 

that are used in a language as preferences and hence can be used to 

rank the multiple parses. These S-constraints can be used for ranking 

by penalizing a parse for the constraint that it violates and finally 

choosing the parse that gets least penalized. This strategy is similar to 

the one used in Optimality Theory [33, 34]. The other way is to use 

these S-constraints as features, associate weight with them, use them to 
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score the output parses and select the parse with the best score. We use 

the latter strategy. The score of a dependency parse tree t=(V, A) in 

most graph-based parsing system [26] is  

       Score(t) = Score(V, A) ∈ R   (I) 

where V and A are the set of vertices and arcs. This score signifies how 

likely it is that a particular tree is the correct analysis of a sentence S. 

Many systems assume the above score to factor through the scores of 

subgraph of t. Thus, the above score becomes 

Score(t) = Σα ∈ αt  λα   (II) 

where α is the subgraph, αt is the relevant set of subgraph in t and λ is a 

real valued parameter. If one follows the arc-factored model for scoring 

a dependency tree [26] like we do, the above score become 

            Score(t) = Σ (i, r, j)  ∈ A    λ(i, r, j)   (III) 

In (III) the score is parameterized over the arcs of the dependency 

tree. Since we are interested in using this scoring function for ranking, 

our ranking function (R) should therefore select the parse that has the 

maximum score amongst all the parses (Φ) produced by the core parser. 

R(Φ, λ) = argmax(t=V,A) ∈T  Score (t) = argmax(t=V,A) ∈ T Σ (i, r, j)  ∈  A    λ(i, r, j)  

(IV) 

Since in our case λ(i, r, j) represent probabilities, it is more natural to 

multiply the arc parameters instead of summing them. 

R(Φ, λ) = argmax(t=V,A) ∈ T  Score (t) = argmax(t=V,A) ∈ T Π (i, r, j)  ∈  A  λ(i, r, j)  

(V) 

For us λ(i, r, j) is simply the probability of relation r on arc i → j given 

some S-constraints (Sc). This probability is obtained using the MaxEnt 

model [40]. So, 

      λ(i, r, j) = p(ri,j | Sc)    (VI) 

If A denotes the set of all dependency labels and B denotes the set of 

all S-constraints then MaxEnt ensures that p maximizes the entropy 

                         H(p) = – Σ x ∈ E  p(x) log p(x)        (VII) 

where x = (a,b), a ∈ A, b ∈ B and E = A × B. Note that, since we are 

not parsing but prioritizing, unlike the arc-factored model where the 

feature function associated with the arc parameter consists only of the 
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features associated with that specific arc, our features can have wider 

context. Figure 10 shows the context over which various S-constraints 

can be specified to create the MaxEnt model. Some of the S-constraints 

that have been tried out are: (1) Order of the arguments, (2) Relative 

position of arguments with respect to the verb, (3) Agreement, 

(4) General graph properties. 
These S-constraints get reflected as features that are used in MaxEnt. 

The features for which the model gave the best performance are given 

below. Note that the actual feature pool was much larger, and some 

features like that for agreement did not get selected. 

 

(1)  Root, POS tag, Chunk tag, suffix of the current node and its parent 

(2)  Suffix of the grandparent, Conjoined suffix of current node and 

head 

(3)  Root, Chunk Tag, Suffix, Morph category of the 1
st
 right sibling 

(4)  Suffix, Morph category of the 1
st
 left sibling 

(5) Dependency relations between the first two, right and left sibling 

and the head 

(6)  Dependency relation between the grandparent and head 

(7)  Dependency relation between the current node and its child 

(8)  A binary feature to signify if a k1 already exist for this head 

(9)  A binary feature to signify if a k2 already exist for this head 

(10)  Distance from a non-finite head 

 
Fig. 10. Context over which S-constraints can be specified. Node i is 

the parent of node j. l–s1 corresponds to 1
st
 left sibling, r–s1 

corresponds to 1
st
 right sibling, gp is grandparent of node j, ch is child 

of node j. r1–r6 are dependency relations 
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The ranking function shown in (V) can differ based on how one gets 

the probability of relation on arc i → j. Since we are ranking labeled 

dependency tree the first way (as shown in VI) is to use the probability 

of the label r in the labeled dependency parse. But we can also use the 

probability of the label given by the MaxEnt model. Considering this, 

the third obvious way is to take the weighted average the two method. 

(VIII) and (IX) show these other two options.  

    λ(i, r, j) = p(rmi,j | Sc)   (VIII) 

where, rm is the relation on arc i → j predicted by the model. 

  λ(i, r, j) = ( p(ri,j | Sc) + p(rmi,j | Sc) ) / 2    (IX) 

When the ranker uses (VI) we call it ‘Ranking with Parser Relation 

probability’ (Rank-PR), the other two are called ‘Ranking with Model 

Relation probability’ (Rank-MR) and ‘Ranking with Weighted Relation 

probability’ (Rank-WR). 

6   PRIORITIZATION RESULTS AND OBSERVATIONS 

Table 3 shows the result of the MaxEnt model4 on the development and 

test data. The features used for training were mentioned in the previous 

section. 

  
Table 3.  Accuracy of the MaxEnt labeler 

 Accuracy 

  

Development 76.62 

Test 76.78 
  

 

The result for Rank-PR, Rank-MR, and Rank-WR on both development 

and testing data is shown in Table 4. It is interesting to note that the 

best system turns out to be Rank-WR. One should not be surprised with 

this as this strategy combines the advantage of both the parser labels 

and the MaxEnt predicted labels. We can see that the best UAS is very 

close to the oracle UAS. The difference however is wider for LAS. 

 

                                                           
4http://maxent.sourceforge.net/ 
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Table 4.  Parser accuracy after Ranking 

  LAS UAS LA 
     

 Rank-PR 59.51 81.56 63.12 

Development Rank-MR 57.03 82.13  61.03   

 Rank-WR 59.51   81.94 63.31 

     

 Rank-PR 58.99  82.45 61.10 

Test Rank-MR 55.18 81.82 57.72 
 Rank-WR 59.83 82.45 61.52 
     

 

The average number of output parses for each sentence is around 10. It 

was noticed that the differences between these parses were very 

minimal and this makes ranking them a non-trivial task. The closeness 

between parses is quite expected from a constraint based parser whose 

output parses are only those that do not violate any of the H-constraints. 

In other words most of the output parses are linguistically very sound. 

Of course, linguistic soundness is only restricted to morpho-syntax and 

does not consider any semantics. This is because the H-constraints do 

not incorporate any semantics in the parser as of now. Considering this, 

the error analysis doesn’t throw up any big surprises. The main reasons 

why the LAS suffers can be attributed to: 

 

i. Lack of explicit post-positions or presence of ambiguous one: 

Errors because of this, manifest themselves at different places. 

This can lead to attachment error. Few common cases are finite 

and non-finite argument sharing, confusion between finite and 

non-finite argument, adjectival participle, appositions, etc. Also, it 

was noted that the most frequent errors are for those arguments of 

the verb, that have no postposition. Consequently, relations such as 

‘k1’, ‘k2’, ‘k7’ and ‘vmod’ have very high confusion. The other 

major error caused by lack of postposition is the selection of parses 

with argument ordering errors. 

ii. Multiple parses with the same score: It is possible that more than 

one parse finally gets the same score. This is partly caused due the 

above reason but it also reflects the accuracy of the labeler. As the 

accuracy of the labeler increases this problem will lessen. 

Currently, we select only the first parse amongst all the parses with 

equal score. 



A CONSTRAINT BASED HYBRID DEPENDENCY PARSER FOR TELUGU 69 

7   CONCLUSION AND FUTURE DIRECTIONS 

In this paper we successfully adapted a constraint based hybrid parser 

for Telugu. We showed that the parser is broad coverage and handles 

various syntactic phenomena. We motivated the analysis in two stages 

and showed that a finite clause can be a basis of such a division. The 

oracle accuracies of the parser on the development and the test data set 

shows that the parser performs well, however there is lot of room for 

improvement in LAS. The deficit in LAS, as showed, was due to 

reasons that can be resolved. Apart from incorporating more H-

constraints, handling more constructions, we also plan to try and induce 

the H-constraints automatically from a treebank. For Hindi and Telugu, 

this has recently been successfully shown by [21]. Along with the base 

parser, we also discussed the ranking strategy to get the best parse. We 

noticed that the best selected parse comes very close to the oracle UAS 

but lags behind in LAS. The error analysis shows that this is mainly 

because of lack of any explicit cues in the sentence. One of the things 

that we plan to do to help improve the final selection is to use an OT 

style filter [34] to compliment the present ranker. Of course, the ranker 

also benefits from any improvement in the core parser. 
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