
IJCLA VOL. 2, NO. 1–2, JAN-DEC 2011, PP. 53–72

RECEIVED 05/11/10 ACCEPTED 02/12/10 FINAL 09/02/11

A Constraint Based Hybrid Dependency Parser

for Telugu

SRUTHILAYA REDDY KESIDI, PRUDHVI KOSARAJU,

MEHER VIJAY, AND SAMAR HUSAIN

IIIT-Hyderabad, India

ABSTRACT

In this paper we present a two stage constraint based approach

to Telugu dependency parsing. We define the two stage and

show how different Telugu constructions are parsed at

appropriate stages. The division leads to selective identification

and resolution of specific dependency relations at the two

stages. We then discuss the ranking strategy that makes use of

the S-constraints to gives us the best parse. A detailed error

analysis of the output of core parser and the ranker helps us to

flesh out the current issues and future directions.

KEY WORDS: Telugu dependency parser, constraint based

parsing, parse ranking, hybrid approach, morphologically rich

free word order parsing

1 INTRODUCTION

There has been a recent surge in addressing parsing for

morphologically rich free word order languages such as Czech,

Turkish, Hindi, etc. These languages pose various challenges for the

task of parsing mainly because the syntactic cues necessary to identify

various relations are complex and distributed [14, 1, 10, 11, 13, 12, 6,

9, 5]. Data driven parser performance [7] show that many of these

complex phenomena are not being captured by the present parsers.

S. R. KESIDI, P. KOSARAJU, M. VIJAY, S. HUSAIN 54

Constraint based parsers have been known to have the power to account

for difficult constructions and are well suited for handling complex

phenomena. Some of the recent constraint based systems have been

[20, 24, 36, 37, 31, 28, 23, 17].

In this paper we present a two stage constraint based approach to

Telugu dependency parsing based on the parser proposed by [3, 4, 35].

We begin by quickly summarizing the parser design and follow it by

describing how different Telugu constructions are parsed at appropriate

stages. We will see that this division leads to selective identification

and resolution of specific dependency relations at the two stages. We

then discuss the ranking strategy that makes use of the S-constraints to

gives us the best parse. A detailed error analysis of the output of core

parser and the ranker helps us to flesh out the current issues and future

directions.

This paper is arranged as follows: Section 2 gives a quick overview

of the two-stage constraint based hybrid parser (CBHP); Section 3

explains in details how we handle different Telugu constructs in two

stages; Section 4 describes the results of the core parser and makes

some observations on these results. In Section 5 we describe the

ranking strategies, followed with results in Section 6. We conclude the

paper with future directions in Section 7.

2 OVERVIEW OF THE TWO-STAGE CONSTRAINT BASED HYBRID

PARSER (CBHP)

CBHP [3, 4] adopts a hybrid approach to dependency parsing. A

constraint based approach is supported by a controlled statistical

strategy to achieve high performance and robustness. The overall task

of dependency parsing is attacked using modularity, wherein specific

tasks are broken down into smaller linguistically motivated sub-tasks.

Figure 1 shows the overall design of CBHP. Below we quickly

summarize CBHP:

(1) Two stages during the sentence analysis phase: The parser tries to

analyze the given input sentence, which has already been tagged and

chunked,1 in two stages; it first tries to extract intra-clausal
2

1 POS and chunk tagging scheme for Indian Languages is discussed in [38].
2 A clause is a group of word such that the group contains a single finite verb

and its dependents. We must note here that these dependents cannot

A CONSTRAINT BASED HYBRID DEPENDENCY PARSER FOR TELUGU 55

dependency relations. In the second stage it then tries to handle more

complex inter-clausal relations such as those involved in constructions

of coordination and subordination between clauses.

(2) H-constraints: Both 1st and 2nd stage use linguistically motivated

constraints. These H- constraints (Hard constraints) reflect that aspect

of the grammar which in general cannot be violated. H-constraints

mainly comprised of structural and lexical knowledge of the language.

(3) S-constraints and Prioritization for parse selection: The sentence

analysis layer (cf. figure 1) can potentially produce more than one

parse. These parses are then ranked by a prioritization component using

S-constraints(Soft constraints). S-constraints are the constraints that are

used in the language as preferences. Unlike the H-constraints that are

derived from a knowledge base and are used within the core parser

during derivation, S-constraints have weights assigned to them and are

used exclusively during prioritization. These weights are automatically

learnt using a manually annotated dependency treebank.

3 CBHP FOR TELUGU

[3], [4] have proposed CBHP for Indian languages. It has however been

tested only for Hindi. We use the same machinery that was used by

them to handle Telugu. We first describe the different types of relations

the parser currently handles in the two stages, following which we

briefly mention H-constraints for Telugu CBHP.

3.1 RELATIONS HANDLED IN STAGE 1

In stage 1 we handle mainly intra-clausal relations. These relations

represent:

themselves be finite verbs. Also, subordinating conjunctions and finite verb

coordinating conjunctions are also not treated as part of a clause. And

therefore, a sentence such as ‘John said that He will come late’ has 3 units;

(1) John said, (2) that, and (3) He will come late. Similarly, ‘John ate his

food and he went shopping’ has 3 units; (1) John ate his food, (2) and, and

(3) he went shopping.

S. R. KESIDI, P. KOSARAJU, M. VIJAY, S. HUSAIN 56

Fig. 1. Design of CBHP

i. Argument structure of the finite verb

ii. Argument structure of the non-finite verb

iii. Adjuncts of finite and the non-finite verb

iv. Noun modifications

v. Adjectival modifications

Using example (1) below we describe how the parser handles a

simple declarative sentence.

(1) wulasi golilu mAnesiMxi

‘Tulasi’ ‘tablets’ ‘stopped using’

‘Tulasi stopped using the tablets’

CBHP begins by constructing the constraint graph (CG) for the

above sentence. A constraint graph shows all the potential arcs that can

exist between the heads and their corresponding dependents. This

A CONSTRAINT BASED HYBRID DEPENDENCY PARSER FOR TELUGU 57

information is obtained from the demand frame of the head. According

to the frame the verb can take k13 and k2 as mandatory children with

null postpositions. Figure 2 shows that the demand frame for

mAnesiMxi is obtained from basic demand frame of root verb mAnu

and the null frame of suffix –esiMxi (which represent the tense, aspect

and modality (TAM)). The basic demand frame for a verb or a class of

verbs specifies the suffix, category, etc. permitted for the allowed

relations for a verb when the verb has the basic TAM label. In Figure

3(a) we show the constraint graph that is constructed using the demand

frame. The final parses are obtained by converting the CG into integer

programming equations and using bi-partite graph matching [36, 37, 4].

Figure 3(b) shows the final parses obtained from the CG. Notice that

we get two parses. This indicates the ambiguity in the sentence if only

the limited knowledge base is considered. Stated another way, H-

constraints (in the form of demand frames) are insufficient to restrict

multiple analysis of a given sentence and that more knowledge

(semantics, other preferences, etc.) is required to curtail the

ambiguities. We will see in Section 5 how we can obtain the best parse

from these multiple parses. Notice also the presence of the _ROOT_

node. By introducing _ROOT_ we are able to attach all unprocessed

nodes to it, ensuring that the output we get after each stage is a tree.

Fig. 2. Final demand frame for mAnesiMxi shown in (c) is obtained

from the basic demand frame of manu (a) and the transformation (b)

which is NULL here.

3k1 can be roughly translated to ‘agent’, k2 can be roughly translated as

‘theme’. CBHP follows the syntactic-semantic dependency labels proposed

in [3].

S. R. KESIDI, P. KOSARAJU, M. VIJAY, S. HUSAIN 58

(a) (b)

Fig. 3. (a) Constraint graph for (1). (b) Final parses obtained from CG

Example (2) is a slightly complex construction containing a non-

finite verb. Such sentences are also handled in the 1
st
 stage.

(2) wulasi rogaM waggiMxani golilu mAnesiMxi.

‘Tulasi’ ‘disease’ ‘having reduced-so’ ‘tablets’ ‘stopped using’.

 ‘As the disease reduced, Tulasi stopped using the tablets’

We have already seen through (1) how a sentence with a finite verb

like mAnesiMxi can be parsed. In (2) in addition to a finite verb we

have a non-finite verb waggiMxani. Like last time we first get the basic

demand frame of the non-finite verb waggiMxani. Basic demand

frames always represent the argument structure of a verb with its

default TAM (present, indefinite). When a new TAM appears with the

verb, we transform the original frame to get the final frame that is

accessed during the construction of the CG. Figure 4 shows this process

clearly. Figure 5 shows the most appropriate final parse.

3.2 RELATIONS HANDLED IN STAGE 2

Stage 2 handles more complex inter-clausal relations such as those

involved in constructions of coordination and subordination between

clauses. Stage 2 handles the following relations:

i. Clausal coordination

ii. Clausal subordination

iii. Non-clausal coordination

iv. Clausal complement

A CONSTRAINT BASED HYBRID DEPENDENCY PARSER FOR TELUGU 59

Fig. 4. Basic Demand frame of waggu (a) is transformed by the

transformation frame A_ani (b) giving us the final frame for

waggiMxani shown in (c).

2
nd

 stage functions similar to the 1
st
 stage, except that in the 2

nd
 stage

the CG has very few nodes. This is because the 1
st
 stage parse subtrees

are mostly not modified in the 2
nd

 stage and only those nodes that are

relevant for 2
nd

 stage relations are considered. Take (3) as a case in

point.

S. R. KESIDI, P. KOSARAJU, M. VIJAY, S. HUSAIN 60

Fig. 5. Appropriate final parse

(3) wulasi golilu mAnesiMxi mariyu paniki velYliMxi

 ‘Tulasi’ ‘tablets’ ‘stopped using’ ‘and’ ‘work’ ‘went’

‘Tulasi stopped using tablets and went to work’

Figure 7(a) shows the first stage parse for this sentence. We can see

that the analysis of the two clauses is complete. The root of these

subtrees and the conjunct mariyu are seen attached to the _ROOT_.

Figure 6 shows the 2
nd

 stage CG for (3). Notice that only the two finite

verbs and the conjunct are seen here. The relations identified in the 1
st

stage remain untouched. Figure 7(b) also shows the final parse for this

sentence; notice that the outputs of the two stages are combined to get

the final parse. Merging the 1
st
 stage and 2

nd
 stage is not problematic as

the two stages are mutually exclusive.

We must note here that for few cases such as (4) below, the 1
st
 stage

output is revised. We follow the same principles as described in [35].

This mainly concerns case dropping in nominal coordinations. Example

5 shows an example of clausal complement where the verb ceVppiMxi

takes the clause headed by a complementizer ani, the complementizer

in turn takes a clause headed by mAnesiMxi. Figure 8(a) and 8(b) shows

the 1
st
 and 2

nd
 stage output of (5) respectively. The 2

nd
 stage CG can be

seen in Figure 9.

(4) wulasi mariyu rama golilu mAnesAru.

 ‘Tulasi ‘and’ ‘Rama’ ‘tablets’ ‘stopped using’

 ‘Tulasi and Rama stopped using tablets.’

A CONSTRAINT BASED HYBRID DEPENDENCY PARSER FOR TELUGU 61

(5) wulasi golilu mAnesiMxi ani rama ceVppiMxi

 ‘tulasi’ ‘tablets’ ‘stopped using’ ‘’ ‘rama’ ‘told’

 ‘Rama told that Tulasi stopped using tablets.’

Fig. 6. 2
nd

 stage constraint graph for (3)

 (a) (b)

Fig. 7. (a) Stage 1 and (b) Stage 2 parse output for (3)

3.3 H-CONSTRAINTS

As mentioned earlier H-constraints in CBHP mainly comprises of the

lexical constraints. This as we saw in section 3.1 corresponds to the

basic demand frame and the transformation frame. For Telugu CBHP

we manually prepared around 460 verb frames and 95 transformation

frames. The transformation frames handles various alternations that are

brought in by non-finite and passive TAMs. High frequency verbs and

tense, aspect and modality markers were extracted from the training

data to prepare the frames. Similarly, other heads such as conjuncts

were also extracted. Preparation of these frames took around 30 days.

S. R. KESIDI, P. KOSARAJU, M. VIJAY, S. HUSAIN 62

(a) (b)

Fig 8. Stage 1 and Stage 2 outputs for sentence (5)

Fig 9. 2

nd
 stage CG for sentence (5)

4 RESULTS AND OBSERVATIONS

In this section we describe the data that was used for evaluation. We

then give the oracle result of the core parser on this data, following

which we discuss the results and the error analysis. The oracle parse for

a sentence is the best available parse amongst all the parses of that

sentence. It is obtained by selecting the parse closest to the gold parse.

The oracle accuracy gives the upper-bound of the parser accuracy and

gives some idea about its coverage.

A CONSTRAINT BASED HYBRID DEPENDENCY PARSER FOR TELUGU 63

4.1 DATA

All the results in this paper are reported for Telugu. We use the Telugu

data set that was released as part of the ICON Tools Contest 2010 [8].

The training data had 1300 sentences, development and test set had 150

and 150 sentences respectively. Since the released data is a preliminary

version of the treebank it had few errors. Certain relations related to

experiencer verbs and verbs of movement have been corrected to report

the results. The current parser does not handle ellipses and therefore all

the sentences with NULL nodes have been removed to report the

results. This data has 1119 training, 133 development and 127 test

sentences.

Table 1. Overall parser oracle accuracy

 LAS UAS LS

Development 68.06 84.41 70.34

Testing 65.33 84.14 66.60

4.2 RESULTS

Table 1 below shows the oracle accuracies of the parser for the

development and testing data. We see that the UAS (unlabeled

attachment score) for both test and development is very good; the

accuracies for LAS (labeled attachment score) and LS (labeled score)

however are not. In Table 2 we show the breakup of the results into

intra-clausal and inter-clausal relations. We see that on an average the

inter-clausal relations are being identified successfully, and the low

LAS of Table 1 can be attributed mainly to the intra-clausal relations.

Table 2. Intra-clausal and Inter-clausal relation accuracy

 LAS UAS LS

Development Intra-clausal 59.83 82.82 63.15

 Inter-clausal 85.89 87.73 85.89

Test Intra-clausal 57.92 85.11 59.87

 Inter-clausal 79.63 82.09 79.63

S. R. KESIDI, P. KOSARAJU, M. VIJAY, S. HUSAIN 64

Further analysis of the results showed why the oracle LAS is not very

high:

1. Coverage of H-constraints: As mentioned earlier we are currently

using around 460 frames in the parser. Close to 30% of all the

verbs in the test and development data were unseen. The parser

uses a default strategy for unseen verbs; not surprisingly, this does

not always work well. Similar observation has been reported in the

literature for all the parsing approaches in general [22].

2. Unhandled Relations: There are still some relations that the parser

doesn’t handle. Complex predicate is one such case. Automatic

identification of such predicates is a challenging task as most

diagnostics proposed in the literature are behavioral [39, 32]. There

has been some work in automatically identifying complex

predicates for Hindi [25, 30]; we need to try and see if these

methods can help us too. Ellipses is another phenomena that the

parser doesn’t handle. In Telugu, sometimes even the main

arguments of the verb might go missing and in such cases the

parser might assign this relation to some other word with the same

property.

3. Morphological errors and ambiguous TAMs: A small portion of

errors are caused when the morphological analyzer gets the root

form of a verb wrong. In such a case, CBHP will pick incorrect

verb frame. Also, in Telugu certain TAM (tense, aspect and

modality) labels are ambiguous and will affect transformations.

5 S-CONSTRAINTS AND PRIORITIZATION

It was clear from Sections 2 and 3 that the core parser that uses H-

constraints produces multiple parses. S-constraints are those constraints

that are used in a language as preferences and hence can be used to

rank the multiple parses. These S-constraints can be used for ranking

by penalizing a parse for the constraint that it violates and finally

choosing the parse that gets least penalized. This strategy is similar to

the one used in Optimality Theory [33, 34]. The other way is to use

these S-constraints as features, associate weight with them, use them to

A CONSTRAINT BASED HYBRID DEPENDENCY PARSER FOR TELUGU 65

score the output parses and select the parse with the best score. We use

the latter strategy. The score of a dependency parse tree t=(V, A) in

most graph-based parsing system [26] is

 Score(t) = Score(V, A) ∈ R (I)

where V and A are the set of vertices and arcs. This score signifies how

likely it is that a particular tree is the correct analysis of a sentence S.

Many systems assume the above score to factor through the scores of

subgraph of t. Thus, the above score becomes

Score(t) = Σα ∈ αt λα (II)

where α is the subgraph, αt is the relevant set of subgraph in t and λ is a

real valued parameter. If one follows the arc-factored model for scoring

a dependency tree [26] like we do, the above score become

 Score(t) = Σ (i, r, j) ∈ A λ(i, r, j) (III)

In (III) the score is parameterized over the arcs of the dependency

tree. Since we are interested in using this scoring function for ranking,

our ranking function (R) should therefore select the parse that has the

maximum score amongst all the parses (Φ) produced by the core parser.

R(Φ, λ) = argmax(t=V,A) ∈T Score (t) = argmax(t=V,A) ∈ T Σ (i, r, j) ∈ A λ(i, r, j)

(IV)

Since in our case λ(i, r, j) represent probabilities, it is more natural to

multiply the arc parameters instead of summing them.

R(Φ, λ) = argmax(t=V,A) ∈ T Score (t) = argmax(t=V,A) ∈ T Π (i, r, j) ∈ A λ(i, r, j)

(V)

For us λ(i, r, j) is simply the probability of relation r on arc i → j given

some S-constraints (Sc). This probability is obtained using the MaxEnt

model [40]. So,

 λ(i, r, j) = p(ri,j | Sc) (VI)

If A denotes the set of all dependency labels and B denotes the set of

all S-constraints then MaxEnt ensures that p maximizes the entropy

 H(p) = – Σ x ∈ E p(x) log p(x) (VII)

where x = (a,b), a ∈ A, b ∈ B and E = A × B. Note that, since we are

not parsing but prioritizing, unlike the arc-factored model where the

feature function associated with the arc parameter consists only of the

S. R. KESIDI, P. KOSARAJU, M. VIJAY, S. HUSAIN 66

features associated with that specific arc, our features can have wider

context. Figure 10 shows the context over which various S-constraints

can be specified to create the MaxEnt model. Some of the S-constraints

that have been tried out are: (1) Order of the arguments, (2) Relative

position of arguments with respect to the verb, (3) Agreement,

(4) General graph properties.
These S-constraints get reflected as features that are used in MaxEnt.

The features for which the model gave the best performance are given

below. Note that the actual feature pool was much larger, and some

features like that for agreement did not get selected.

(1) Root, POS tag, Chunk tag, suffix of the current node and its parent

(2) Suffix of the grandparent, Conjoined suffix of current node and

head

(3) Root, Chunk Tag, Suffix, Morph category of the 1
st
 right sibling

(4) Suffix, Morph category of the 1
st
 left sibling

(5) Dependency relations between the first two, right and left sibling

and the head

(6) Dependency relation between the grandparent and head

(7) Dependency relation between the current node and its child

(8) A binary feature to signify if a k1 already exist for this head

(9) A binary feature to signify if a k2 already exist for this head

(10) Distance from a non-finite head

Fig. 10. Context over which S-constraints can be specified. Node i is

the parent of node j. l–s1 corresponds to 1
st
 left sibling, r–s1

corresponds to 1
st
 right sibling, gp is grandparent of node j, ch is child

of node j. r1–r6 are dependency relations

A CONSTRAINT BASED HYBRID DEPENDENCY PARSER FOR TELUGU 67

The ranking function shown in (V) can differ based on how one gets

the probability of relation on arc i → j. Since we are ranking labeled

dependency tree the first way (as shown in VI) is to use the probability

of the label r in the labeled dependency parse. But we can also use the

probability of the label given by the MaxEnt model. Considering this,

the third obvious way is to take the weighted average the two method.

(VIII) and (IX) show these other two options.

 λ(i, r, j) = p(rmi,j | Sc) (VIII)

where, rm is the relation on arc i → j predicted by the model.

 λ(i, r, j) = (p(ri,j | Sc) + p(rmi,j | Sc)) / 2 (IX)

When the ranker uses (VI) we call it ‘Ranking with Parser Relation

probability’ (Rank-PR), the other two are called ‘Ranking with Model

Relation probability’ (Rank-MR) and ‘Ranking with Weighted Relation

probability’ (Rank-WR).

6 PRIORITIZATION RESULTS AND OBSERVATIONS

Table 3 shows the result of the MaxEnt model4 on the development and

test data. The features used for training were mentioned in the previous

section.

Table 3. Accuracy of the MaxEnt labeler

 Accuracy

Development 76.62

Test 76.78

The result for Rank-PR, Rank-MR, and Rank-WR on both development

and testing data is shown in Table 4. It is interesting to note that the

best system turns out to be Rank-WR. One should not be surprised with

this as this strategy combines the advantage of both the parser labels

and the MaxEnt predicted labels. We can see that the best UAS is very

close to the oracle UAS. The difference however is wider for LAS.

4http://maxent.sourceforge.net/

S. R. KESIDI, P. KOSARAJU, M. VIJAY, S. HUSAIN 68

Table 4. Parser accuracy after Ranking

 LAS UAS LA

 Rank-PR 59.51 81.56 63.12

Development Rank-MR 57.03 82.13 61.03

 Rank-WR 59.51 81.94 63.31

 Rank-PR 58.99 82.45 61.10

Test Rank-MR 55.18 81.82 57.72
 Rank-WR 59.83 82.45 61.52

The average number of output parses for each sentence is around 10. It

was noticed that the differences between these parses were very

minimal and this makes ranking them a non-trivial task. The closeness

between parses is quite expected from a constraint based parser whose

output parses are only those that do not violate any of the H-constraints.

In other words most of the output parses are linguistically very sound.

Of course, linguistic soundness is only restricted to morpho-syntax and

does not consider any semantics. This is because the H-constraints do

not incorporate any semantics in the parser as of now. Considering this,

the error analysis doesn’t throw up any big surprises. The main reasons

why the LAS suffers can be attributed to:

i. Lack of explicit post-positions or presence of ambiguous one:

Errors because of this, manifest themselves at different places.

This can lead to attachment error. Few common cases are finite

and non-finite argument sharing, confusion between finite and

non-finite argument, adjectival participle, appositions, etc. Also, it

was noted that the most frequent errors are for those arguments of

the verb, that have no postposition. Consequently, relations such as

‘k1’, ‘k2’, ‘k7’ and ‘vmod’ have very high confusion. The other

major error caused by lack of postposition is the selection of parses

with argument ordering errors.

ii. Multiple parses with the same score: It is possible that more than

one parse finally gets the same score. This is partly caused due the

above reason but it also reflects the accuracy of the labeler. As the

accuracy of the labeler increases this problem will lessen.

Currently, we select only the first parse amongst all the parses with

equal score.

A CONSTRAINT BASED HYBRID DEPENDENCY PARSER FOR TELUGU 69

7 CONCLUSION AND FUTURE DIRECTIONS

In this paper we successfully adapted a constraint based hybrid parser

for Telugu. We showed that the parser is broad coverage and handles

various syntactic phenomena. We motivated the analysis in two stages

and showed that a finite clause can be a basis of such a division. The

oracle accuracies of the parser on the development and the test data set

shows that the parser performs well, however there is lot of room for

improvement in LAS. The deficit in LAS, as showed, was due to

reasons that can be resolved. Apart from incorporating more H-

constraints, handling more constructions, we also plan to try and induce

the H-constraints automatically from a treebank. For Hindi and Telugu,

this has recently been successfully shown by [21]. Along with the base

parser, we also discussed the ranking strategy to get the best parse. We

noticed that the best selected parse comes very close to the oracle UAS

but lags behind in LAS. The error analysis shows that this is mainly

because of lack of any explicit cues in the sentence. One of the things

that we plan to do to help improve the final selection is to use an OT

style filter [34] to compliment the present ranker. Of course, the ranker

also benefits from any improvement in the core parser.

REFERENCES

1. Ambati, B.R., Husain, S., Nivre, J., Sangal, R.: On the Role of

Morphosyntactic Features in Hindi Dependency Parsing. In: NAACL-HLT

2010 workshop on Statistical Parsing of Morphologically Rich Language,

Los Angeles, CA. (2010)

2. Begum, R., Husain, S., Dhwaj, A., Sharma, D., Bai, L., Sangal, R.:

Dependency annotation scheme for Indian languages. In: IJCNLP08 (2008)

3. Bharati, A., Husain, S., Misra, D., Sangal, R.: Two stage constraint based

hybrid approach to free word order language dependency parsing. In: The

11th IWPT09. Paris (2009)

4. Bharati, A., Husain, S., Vijay, M., Deepak, K., Misra, D., Sangal, R.:

Constraint Based Hybrid Approach to Parsing Indian Languages. In: The

23rd Pacific Asia Conference on Language, Information and Computation.

Hong Kong (2009)

5. Eryigit, G., Nivre, J., Oflazer, K.: Dependency Parsing of Turkish.

Computational Linguistics 34(3), 357-389 (2008)

6. Goldberg, Y., Elhadad, M.: Hebrew Dependency Parsing: Initial Results.

In: The 11th IWPT09. Paris (2009)

S. R. KESIDI, P. KOSARAJU, M. VIJAY, S. HUSAIN 70

7. Hall, J., Nilsson, J., Nivre, J., Eryigit, G., Megyesi, B., Nilsson M., Saers,

M.: Single Malt or Blended? A Study in Multilingual Parser Optimization.

In: EMNLP-CoNLL shared task (2007)

8. Husain, S., Mannem, P., Ambati, B., Gadde, P.: The ICON-2010 tools

contest on Indian language dependency parsing. In: ICON-2010 tools

contest on Indian language dependency parsing. Kharagpur, India (2010) to

appear

9. Husain, S., Gadde, P., Ambati, B., Sharma, D., Sangal, R.: A modular

cascaded approach to complete parsing. In: The COLIPS International

Conference on Asian Language Processing (IALP) Singapore (2009)

10. McDonald, R., Nivre, J.: Characterizing the Errors of Data-Driven

Dependency Parsing Models. In: Joint Conference on Empirical Methods

in Natural Language Processing and Computational Natural Language

Learning (2007)

11. Nivre. J.: Non-Projective Dependency Parsing in Expected Linear Time. In:

ACL-IJCNLP (2009)

12. Seddah, D., Candito, M., Crabbé, B.: Cross parser evaluation : a French

Treebanks study. In: The 11th IWPT09. Paris (2009)

13. Tsarfaty, R., Sima'an., K.: Relational-Realizational Parsing. In: The 22nd

CoLing. Manchester, UK. (2008)

14. Tsarfaty, R., Seddah, D., Goldberg, Y., Kuebler, S., Versley, Y., Candito,

M., Foster, J., Rehbein, I., Tounsi, L.: Statistical Parsing of

Morphologically Ricj Languages (SPMRL) What, How and Wither. In:

NAACL-HLT 2010 workshop on Statistical Parsing of Morphologically

Rich Languages (SPMRL 2010), Los Angeles, CA. (2010)

15. Begum, R., Husain, S., Sharma, D., Bai, L.: Developing Verb Frames in

Hindi. In: LREC (2008)

16. Collins, M., Koo, T.: Discriminative reranking for natural language parsing.

In: CL p.25-70 March05 (2005)

17. Debusmann, R., Duchier, D., Kruijff, G.: Extensible dependency grammar:

A new methodology. In: Workshop on Recent Advances in Dependency

Grammar, pp. 78–85 (2004)

18. Foth, K. A., Menzel, W.: Hybrid parsing: Using probabilistic models as

predictors for a symbolic parser. In: COLING-ACL06 (2006)

19. Goldberg, Y., Elhadad, M.: Hebrew Dependency Parsing: Initial Results.

In: the 11th IWPT09. (2009)

20. Karlsson, F., Voutilainen, A., Heikkilä, J., Anttila, A. (eds): Constraint

Grammar: A language-independent system for parsing unrestricted text.

Mouton de Gruyter. (1995)

21. Kolachina, P., Kolachina, S., Singh, A.K., Naidu, V., Husain, S., Sangal,

R., Bharati, A.: Grammar Extraction from Treebanks for Hindi and Telugu.

(2009)

22. Manning, C.D., Schütze, H: Foundations of statistical natural language

processing. MIT Press, pp. 272, 299 (2002)

23. Martins, A., Smith, N., Xing, E.: Concise Integer Linear Programming

Formulations for Dependency Parsing. In: the ACL-IJCNLP09 (2009)

A CONSTRAINT BASED HYBRID DEPENDENCY PARSER FOR TELUGU 71

24. Maruyama, H.: Structural disambiguation with constraint propagation. In:

ACL:90 (1990)

25. Mukerjee, A., Soni, A.,, Raina, A.M.: Detecting Complex Predicates in

Hindi using POS Projection across Parallel Corpora. In: the COLING-ACL

Workshop on Multiword Expressions: Identifying and Exploiting

Underlying Properties, Sydney. (2006)

26. Kubler, S., McDonald, R., Nivre, J.: Dependency parsing. Morgan and

Claypool. (2009)

28. Schröder, I.: Natural Language Parsing with Graded Constraints. PhD

thesis, Hamburg Univ (2002)

29. Shen, L., Sarkar, A., Joshi, A.K.: Using LTAG Based Features in Parse

Reranking. In: EMNLP (2003)

30. Sinha, R. M. K.: Mining Complex Predicates In Hindi Using A Parallel

Hindi-English Corpus. In: MWE09, ACL-IJCNLP (2009).

31. Tapanainen, P., Järvinen, T.: A non-projective dependency parser. In: the

5th Conference on Applied Natural Language Processing, pp. 64–71.

(1997)

32. Verma, M. K. (ed.): Complex Predicates in South Asian Languages.

Manohar Publications. New Delhi (1993)

33. Prince, A., Smolensky, P.: Optimality Theory: constraint interaction in

generative grammar. In: Technical Report, Rutgers Center for Cognitive

Science. (1993)

34. Aissen, J.: Markedness and subject choice in Optimality Theory. Natural

Language and Linguistic Theory 17:673–711. (1999)

35. Bharati, A., Husain, S, Sharma, D.M., Sangal, R.: A Two-Stage Constraint

Based Dependency Parser for Free Word Order Languages. In: the COLIPS

IALP. (2008)

36. Bharati, A., Sangal, R., Reddy, T.P.: A Constraint Based Parser Using

Integer Programming, In: ICON. (2002)

37. Bharati, A. Sangal, R.: Parsing Free Word Order Languages in the Paninian

Framework. In: ACL: 93 (1993)

38. Bharati, A., Sharma, D. M., Bai, L, Sangal, R.: AnnCorra: Annotating

Corpora Guidelines for POS and Chunk Annotation for Indian Languages.

LTRC-TR31. (2006)

39. Butt. M.: The Structure of Complex Predicates in Urdu. CSLI Publications

(1995)

40. Ratnaparkhi, A.: Maximum entropy models for natural language ambiguity

resolution. Ph.D. Dissertation, University of Pennsylvania. IRCS Tech

Report IRCS-98-15. (1998)

SRUTHILAYA REDDY KESIDI

LANGUAGE TECHNOLOGIES RESEARCH CENTRE,

IIIT-HYDERABAD,

INDIA

E-MAIL: <SRUTHILAYA@STUDENTS.IIIT.AC.IN>

S. R. KESIDI, P. KOSARAJU, M. VIJAY, S. HUSAIN 72

PRUDHVI KOSARAJU

LANGUAGE TECHNOLOGIES RESEARCH CENTRE,

IIIT-HYDERABAD,

INDIA

E-MAIL: <PRUDHVI@STUDENTS.IIIT.AC.IN>

MEHER VIJAY

LANGUAGE TECHNOLOGIES RESEARCH CENTRE,

IIIT-HYDERABAD,

INDIA

E-MAIL: <MEHERVIJAY.YELETI@RESEARCH.IIIT.AC.IN>

SAMAR HUSAIN

LANGUAGE TECHNOLOGIES RESEARCH CENTRE,

IIIT-HYDERABAD,

INDIA

E-MAIL: <SAMAR@RESEARCH.IIIT.AC.IN>

