
Interactive QA using the QALL-ME Framework

IUSTIN DORNESCU AND CONSTANTIN OR̆ASAN

University of Wolverhampton, UK

ABSTRACT

One of the main concerns when deploying a real-world QA
system is user satisfaction. Despite the relevance of criteria such
as usability and utility, mainstream research usually overlooks
them due to their inherent subjective, user-centric nature and the
difficulty of the evaluation involved. This problem is particularly
important in the case of real-world QA systems where a ”0
results found” answer is not very useful. This paper presents
how interaction can be embedded into the QALL-ME framework,
an open-source framework for implementing closed-domain QA
systems. The changes necessary to improve the framework are
described, and an evaluation of the feedback returned to the user
for questions that have no answer is performed.

1 INTRODUCTION

The need to access information and find answers to questions in vast
collections of documents led to the emergence of the field of Question
Answering (QA). Despite extensive research in this field, the accuracy
of open domain question answering system, i.e., systems that can answer
any question from any collection of documents, is still rather modest. For
this reason, real-world question answering systems are usually closed
domain, which means that they are built for very specific domains and
exploit domain knowledge to answer questions [1].

One of the main concerns when deploying a real-world QA system
is user satisfaction. Despite the relevance of criteria such as usability
and utility, mainstream research usually overlooks them due to their

IJCLA VOL. 1, NO. 1-2, JAN-DEC 2010, PP. 233-247
RECEIVED 03/12/09 ACCEPTED 16/01/10 FINAL 10/03/10

inherent subjective, user-centric nature and the difficulty of the evaluation
involved. QA benchmarks and evaluation fora (such as TREC1 or CLEF2)
usually focus on achieving highly accurate and robust systems, and
quantify their performance in terms of precision and recall. We argue
that a successful deployment of QA systems should not solely rely on the
correctness of the answers, but also on how they interact with users and
satisfy their needs. This was acknowledged by the increasing interest in
interactive question answering [2–4].

The QALL-ME project [5] has developed a framework for
implementing question answering systems for restricted domains. The
first implementation of this framework was for the domain of tourism, but
it is not bound in any particular way to this domain as demonstrated by
its adaptation to the domain of bibliographical information [6]. Despite
its flexibility, the framework lacks built-in support for user interaction.
This paper demonstrates how it is possible to embed interactivity in the
existing framework. The remainder of the paper is structured as follows:
Section 2 briefly presents the overall QALL-ME project and framework.
The technique used to embed interaction in the framework is presented
in Section 3. An evaluation of user satisfaction of the interactivity is
presented in Section 4, and the paper finishes with a discussion and
conclusions.

2 THE QALL-ME PROJECT AND FRAMEWORK

QALL-ME (Question Answering Learning technologies in a
multiLingual and Multimodal Environment) is an EU-funded project
with the objective of developing a shared infrastructure for multilingual
and multimodal open domain Question Answering.3 It allows users
to express their information needs in the form of multilingual natural
language questions using mobile phones and returns a list of ranked
specific answers rather than whole web pages.

Language variability, one of the main difficulties of dealing with
natural language, is addressed in QALL-ME by reformulating it as a
textual entailment recognition problem. In textual entailment, a text (T)
is said to entail a hypothesis (H), if the meaning of H can be derived from

1 http://trec.nist.gov/
2 http://www.clef-campaign.org/
3 More information about the QALL-ME project can be found at

http://qallme.fbk.eu

234 IUSTIN DORNESCU, CONSTANTIN ORĂSAN

the meaning of T. To this end, each question is treated as the text and the
hypothesis is a procedure for answering the question [7].

The QALL-ME framework is an architecture for multilingual
question answering (QA) systems that can answer questions from
structured data sources for freely specifiable domains.4 In a closed-
domain QA system, a question can be viewed as a composition of
constraints regarding instances, types and the relations between them.
The QALL-ME Framework does the following:

– reliably identifies constraints with respect to a domain modelled by
an ontology

– creates the SPARQL query corresponding to the question
interpretation

– retrieves the results from a data repository

The first implementation of the framework was for the domain of tourism
which will be used for the examples in this paper. The QALL-ME
framework is based on a Service Oriented Architecture (SOA) which,
for this domain, is realised using the following web services:

1. Context providers: used to anchor questions in space and time
in this way enabling answers to temporally and spatially restricted
questions

2. Annotators: identify different types of entities in the input question.
Currently three types of annotators are available:

– named entity annotators which identify names of cinemas,
movies, persons, etc.

– term annotators which identify hotel facilities, movie genres and
other domain-specific terminology

– temporal annotators that are used to recognise and normalise
temporal expressions in user questions

3. Entailment engine: used to overcome the problem of user question
variability and determine whether a user question entails a retrieval
procedure associated with predefined question patterns.

4. Query generator: relies on an entailment engine to generate a query
that can be used to extract the answer to a question from a database.
For the tourism demonstrator the output of this web service is a
SPARQL query.5

4 http://qallme.sourceforge.net/
5 SPARQL is a query language defined by the W3C RDF Data Access

Working Group which can be used for accessing RDF graphs. It is defined

INTERACTIVE QA USING THE QALL-ME FRAMEWORK 235

5. Answer pool: retrieves the answers from a database using the
query produced by the query generator. In the case of the tourism
demonstrator, the answers are extracted from RDF encoded data
using SPARQL queries.

The answers, encoded as an RDF graph, are passed to a presentation
module which is domain dependent and is not defined in any way by
the framework. The interaction between services and the cross-lingual
capabilities of the system are realised with the help of a domain ontology,
which in the case of the first prototype is described in [8]. The ontology is
also used to determine the format in which data is stored and to construct
SPARQL queries that are used to access the RDF graph.

The services described above are called by a QPlanner that decides
which one should be called depending on the setting: monolingual or
cross-lingual (for more details see [5]). One of the drawbacks of the
existing QPlanner is that it is only feed-forward, meaning that if a
question does not have an answer there is no way to inform the user
and allow any form of interaction. In the context of QALL-ME, [9]
proposed a way to interact with the user, but the approach does not use
the existing framework and requires a completely new implementation.
The next section discusses how it is possible to integrate interaction with
minimum changes to the existing services.

3 PROVIDING SUPPORT FOR INTERACTION WITH THE USER

Most QA systems have a very basic level of interactivity consisting
of independent (question, response) pairs. This type of interaction can
quickly become frustrating for the user unless the accuracy of the system
is very high. Unlike their open-domain counterparts, closed-domain
systems embed enough knowledge to successfully address most correct
questions relevant to the domain. However, misunderstandings can occur
and the system should provide feedback regarding its ‘understanding’
of the question, thereby helping the user quickly identify the source of
misunderstanding. If the interaction medium is extended to accommodate
the user’s feedback using either natural language templates (e.g.No, I did
not ask about ... I wanted to know ...) or via an interactive user interface
(Web, mobile clients), then a feedback loop is created which promotes

in terms of the W3C’s RDF data model and will work for any data
source that can be mapped into RDF. More information can be found at:
http://www.w3.org/2001/sw/DataAccess/

236 IUSTIN DORNESCU, CONSTANTIN ORĂSAN

a more natural interaction with the user and continuously improves
responses from the system.

The treatment of questions that yield no answer should be an
important part of any real-world QA system. The first step in clarifying
why there are0 results foundconsists of providing feedback regarding
the interpretation of the question, as mentioned above. When the cause
is not a misunderstanding, but an overly-specific question, the system
should explain why there is no answer and suggest possible changes to
the original question, encouraging the user to pose additional questions,
e.g. by suggesting more general questions with relaxed constraints, or
suggesting alternative constraints which do yield relevant answers. For
example, if the user asksWhere can I see Matrix in Wolverhampton
tonight?and there is no such screening, it is not useful just to display
No results. Users may find an answer such asThere is no screening of
the movie Matrix in Wolverhampton tonight. Do you want to find out
“What movies can I see in Wolverhampton tonight?”more appropriate.
This gives them the opportunity to either accept the suggestion and be
presented with the information, or pose a different question initiating a
new cycle.

In QALL-ME, processing a question ends once the data is retrieved
from the database. Results are presented to the user by a presentation
module which is specialised for a particular interaction medium. To
enable the behaviour suggested above, the presentation module needs
more than just a SPARQL query and the actual results. This is mainly
because the SPARQL query only encodes the semantics of the question
implicitly, while the presentation module needs explicit meta-data about
the system’s understanding/interpretation to suggest viable alternatives to
the user. In the current QALL-ME architecture, the actual interpretation
occurs during the query generation and the entailment engine stages.
For this reason, the semantic information is not directly accessible to
the QPlanner. The solution is therefore to augment the output returned
by the Query Generator (i.e. the SPARQL query) with meta-data which
makes the question interpretation explicit, e.g. in terms of EAT and the
constraints identified in the question.

In this section, we show how interaction with the user can be achieved
without changing the architecture of the QALL-ME Framework. The
proposed mechanism consists of two main parts: 1) injecting meta-
data explicitly encoding the system’s understanding of the question
with respect to the underlying domain ontology, and 2) formulating

INTERACTIVE QA USING THE QALL-ME FRAMEWORK 237

Fig. 1. The qmq terminology

informative answers based on the results given and the question
interpretation meta-data. Each of these is discussed below.

3.1 The qmq mechanism (injecting meta-data)

In order to provide maximum flexibility, we chose to encode
the necessary meta-data using an RDFS terminology, and leave
implementation details and extensions to be tailored for each actual
application. The terminology contains only the basic concepts: expected
answer type, question constraint and question interpretation. The
mechanism does not require any changes to the current Web Services
specification of the QALL-ME framework, being compatible with
the current prototype implementations. An added bonus is that the
RDFS terminology used for representing the semantic interpretation
is extensible, in line with the generic character of the QALL-ME
framework, allowing other types of semantic interpretations to be added
in future, without breaking existing applications. Figure 1 presents the
qmq terminology.

238 IUSTIN DORNESCU, CONSTANTIN ORĂSAN

As mentioned above, the output of the Question Generation service is
a SPARQL query that can extract the answer to a question. Schematically
this query is represented by the following template:

[[prefix declarations]]
CONSTRUCT{

[[triples containing the results : qmo]]
[[additional information : qmo]]
[[answer meta-data : qma]]

}WHERE{
[[triples for identifying solutions]]
[[filters for grounding the constraints]]

}

In order to accommodate the new features, the base SPARQL
template is changed by injecting additional information:

[[prefix declarations]]
CONSTRUCT{

[[triples containing the results : qmo]]
[[additional information : qmo]]
[[answer meta-data : qma]]
[[interpretation meta-data : qmq]]

}WHERE{ OPTIONAL{
[[triples for identifying solutions]]
[[filters for grounding the constraints]]

}}

Adding the encompassing OPTIONAL keyword ensures that the
meta-data triples from the CONSTRUCT part are generated when
querying the data-store, even if no actual solution is found. This means
that the presentation module can use this extra information to generate
informative answers.

3.2 Generating Feedback: question interpretation

Providing feedback regarding the system’s understanding helps the
user to easily identify misinterpretations, allowing them to rephrase
the question in a way that would eliminate the cause of ambiguity
or error. The presence of the question interpretation meta-data in the
retrieved RDF graph (even in the absence of actual results), enables

INTERACTIVE QA USING THE QALL-ME FRAMEWORK 239

the presentation module to describe the systems understanding of the
question to the user. Instead of saying:0 results found, the presentation
module can use the meta-data to say:No action movies are shown
between 12 and 18 October in Wolverhampton, West Midlands.

For the above example, the triples added to the CONSTRUCT section
to enable feedback generation are:

prefuri:qi rdf:type qmq:QuestionInterpretation;
qmq:hasInterpretation "[GENRE] movies

that will be showed
during TIME] in [DESTINATION]"@en;

qmq:eat qmo:Movie.

The prefuri prefix can be a standard prefix or a dereferenceable
URI associated with the user session, enabling real dialogue interaction.
The qmq:hasInterpretation property contains a natural language
explanation, which is a form of textual feedback to be shown to the user,
but it can also be the URI of a resource from a custom repository encoding
more complex information (e.g. HTML generation templates).

The actual implementation is application dependent. The content
generation templates can be part of a resource which uses/extends the
qmq terminology to accommodate different presentation media, multi-
linguality, dialogue management, etc. We chose the RDFS semantics for
specifying the terminology in order to maintain flexibility. An actual
implementation could use a richer representation schema if necessary.

3.3 Informativeness: Filters

To find information quickly, users need a certain level of familiarity with
the system such as how to best pose questions, the kind of requests the
system can address and the data that the system can access. In order
to facilitate and create a more natural interaction, the system should go
beyond displaying lists of results by generating informative answers. A
straight-forward way to do this is by extending the meta-data describing
the constraints.

In cases where a question does not yield any results, the system
should be able to suggest ways in which the constraints can be
successfully relaxed, to find some results. The qmq:Filter instances
should therefore mark the value that enforces the constraint. In the
following listing we give an example of such meta-data:

240 IUSTIN DORNESCU, CONSTANTIN ORĂSAN

prefuri:c1 rdf:type qmq:Filter;
qmq:hasInterpretation "Movies

in [DESTINATION]";
qmq:hasType qmo:Destination;
qmq:hasProperty qmo:name;
qmq:hasValue ’’’FILTER (?destName =

"[DESTINATION]").’’’.

prefuri:c2 rdf:type qmq:Filter;
qmq:hasInterpretation "Movies during

[TIMEX]";
qmq:hasType qmo:DatePeriod;
qmq:hasProperty qmo:startDate;
qmq:hasValue ’’’[TIMEX2]’’’.

Each of the filters indicates the SPARQL filter clause enforcing it
via the property qmq:hasValue. Using this meta-data, the presentation
module can remove the filter from the SPARQL and pre-emptively
check if ignoring this constraint yields any/additional results. This is
particularly useful in cases where questions yield no answers: the
system can suggest alternatives by removing the filtering clause from
the SPARQL, querying the data-store again and identifying alternatives.
For example, by relaxing the spatial constraintc1 , the system can find
which Destinations (qmq:hasType) actually yield results, and extract their
names (qmq:hasProperty).

The way such information is displayed depends on the application
and the medium used. A textual answer could be:No movies found during
’this week’ within ’Wolverhampton’. Try another DatePeriod(5 movies)
or another Destination(12 movies). On a mobile device, a map can be
displayed with the number of movies available for every Destination,
and on the Web the interface can be much richer: a full list of answers
with reviews, ratings, times. The system can have several strategies for
generating answers and only display the highest ranked ones based on
their informativeness.

4 EVALUATION OF THE ANSWER FEEDBACK COMPONENT

As explained in the previous section, one way to deal with questions with
no answers is to relax or remove their constraints. However, there are
various ways in which these constraints can be changed. In this section

INTERACTIVE QA USING THE QALL-ME FRAMEWORK 241

we present an evaluation where a set of 6 questions, 3 from the domain
of movies/cinema and 3 from the domain accommodation, were shown
to users telling them they have no answers and showing them alternative
questions that can be generated by the system as part of the response.
Users were asked to rate each alternative question on a scale from 1 to 4,
1 indicating a very bad alternative, and 4 corresponding to an excellent
alternative. 31 participants were involved in the experiment.

The questions considered for this experiment contained constraints
about time (this weekend, tonight), location (Wolverhampton), movie
name (Matrix), facilities (e.g.disabled access), movie genre (horror
movie), hotel rating and room price. We selected these constraints as they
are important in user questions and cover a wide range of concepts from
the ontology. The following list of questions was used:

1. Where can I see Matrix in Wolverhampton tonight?
2. Where can I see Matrix in Wolverhampton this weekend?
3. What is the name of a hotel in Wolverhampton with disabled access?
4. What horror movie can I see in Birmingham on Friday night?
5. Where can I find a four star hotel in Wolverhampton?
6. What is the name of a hotel in Wolverhampton where single rooms

cost less than£57?

For each of these questions between 4 and 6 alternative questions
were produced, in addition to a reply indicating that there are no answers.
For example, the following alternatives were proposed for the first
question:

1. There is no screening of the movie Matrix in Wolverhampton tonight.
2. Do you want to find outWhat moviescan I see in Wolverhampton

tonight?
3. Do you want to find outWhere can I see Matrix tonight?
4. Do you want to find outWhen can I see Matrix in Wolverhampton?
5. Do you want to know Where can I see Matrix in Wolverhampton

tomorrow?
6. Do you want to know Where can I see Matrix in Wolverhampton

tomorrow evening?
7. Do you want to find out Where can I see Matrix inBirmingham

tonight?

A score was calculated for each alternative option for a question as
the average rating assigned to it by the users. Tables 1 and 2 present these

242 IUSTIN DORNESCU, CONSTANTIN ORĂSAN

Table 1. Results for the question in the movie/cinema domain

1 2 3 4 5 6 7

Q1
avg.score 2.61 3.42 3.35 3.23 2.452.16 2.32
rank 2 1 1 1 2 3 2,3

Q2
avg.score 2.65 3.29 3.13 3.06 2.55 2.35
rank 2 1 1 1 2 2

Q4
avg.score 2.61 2.90 2.45 3.131.65 2.39
rank 2 1,2 2 1 3 2

scores. Paired T-test was used to calculate whether there is a statistically
significant difference between the answers.

In our domain, spatially and temporally restricted questions are very
common, therefore it is important to suggest follow-up questions that
are likely to be useful to users. In the first two questions we investigate
if the granularity of the temporal constraint from the question (tonight
vs. this weekend) has an impact on the usefulness of alternative time
spans. Table 1 presents the average score for each option. The difference
between options in the same rank is not statistically relevant. Suggesting
a particular alternative value for the temporal constraint (e.g.tomorrow
instead of tonight) was considered less useful than showing all the
available alternatives (options 5 and 6 vs. 4 in both questions). This is also
true for the spatial constraint (option 7 vs. 3 in Q1). In both questions, the
three options that inform the user of all the available alternatives (options
2, 3 and 4) were consistently rated the most useful. This suggests that
the users want to know what their options are before committing to a
decision.

In question 4 there are three constrains: temporal, spatial and film
genre. The results show that option 4 (which movies are available,
regardless of the genre) is very useful, while option 5 (which romantic
comedies are available) is the least useful and the other options are not
statistically distinguishable from the reference option. The results are
consistent with our findings so far: ignoring the genre constraint and
listing the available movies (option 4) is more useful than pre-emptively
modifying the initial question with a viable alternative (options 2, 3, 5
and 6). Users foundromantic comedies(option 5) a much less desirable
alternative tohorror movies thanaction thrillers (option 6), suggesting

INTERACTIVE QA USING THE QALL-ME FRAMEWORK 243

Table 2. Results for the question in the accommodation domain

1 2 3 4 5 6

Q3
avg.score 2.45 1.26 2.23 3.13 1.55 3.58
rank 3 5 3 2 4 1

Q5
avg.score 2.61 2.84 3.19 3.32 2.29
rank 2,3 2 1 1 3

Q6
avg.score 2.68 2.03 3.03 2.94 3.35
rank 2 3 2 2 1

that it is not only the constraint type that is important, but also the value
specified by the user.

In the accommodation domain we would expect the users to be more
rigid regarding temporal and spatial constraints, with factors such as price
and star rating also being important.

In question 3 we investigated: alternative facilities - swimming
pool (option 2), ignoring the facilities constraint (option 3), alternative
destination - Birmingham (option 4), alternative site - cinema (option 5)
and alternative type - bed and breakfast (option 6). Only options 1 and
3 do not have statistically significant differences, while options 2 and 5,
as expected, have a very low score. The results show that thedisabled
accessfacility is the most important constraint in the question: users
would accept a bed and breakfast or a different city, before considering
giving it up. However not all facilities are this important: at the other
end of the scale we can imagine room facilities such asironing board
or complimentary newspaperwhich usually reflect preference rather than
necessity.

In question 5 we investigated: alternative city - Birmingham (option
2), ignoring rating (option 3), alternative rating (option 4), and alternative
type - bed and breakfast (option 5). The results suggest that it is useful
to inform the users about what hotels are available regardless of star
rating, and that a bed and breakfast is less desirable, in this case contrary
to the previous question. Therefore, option 4 suggests that when the
alternative values are well known (e.g. star ratings for hotels), suggesting
an alternative is useful. The last two questions show that the usefulness is
influenced not only by the type of the constraints present in the questions,
but also by the constrained values.

244 IUSTIN DORNESCU, CONSTANTIN ORĂSAN

In question 6, also option 5 which gave the user the full list of
hotels and the price charged by each was the most useful (statistically
significant). Option 2 was statistically less useful because it just offered
a list of hotels, without factoring the price. Picking particular alternatives
for constraints (options 3 and 4) scored better than the reference response,
but did not prove statistically different.

The analysis presented above shows that suggesting follow-up
questions is more useful than just informing the users there were no
answers. In most cases, users prefer more general questions which give
them information about the available options. Suggesting questions in
which one of the initial constraints is changed was not very useful as
it may not match the user’s preferences. The analysis also revealed that
for most constraint types, the usefulness of alternative values depends
on the actual values specified in the question, confirming that usefulness
depends on the context. This suggests that in order to factor all possible
contexts, a system has to automatically learn from users’ choices in order
to improve its performance.

As a result of the analysis, the prototype was updated to generate
responses which help users acknowledge their options in a shortened
version allowing preference data to be collected:The movie ’Matrix’ is
not on ’tonight’ in ’Wolverhampton’. You can either see othermovies,
other times (when it is available), or otherdestinations(where it is
available).

To provide such an answer, the system must pre-emptively check
that the alternatives proposed actually yield answers. If the user’s input
matches one of the three follow-up words (e.g.The movies!), the system
does not have to run the entire pipeline again, but instead, simply returns
the answers which have been determined already. In these cases, the
interaction has more turns than the initial (question, response) pair.

When two of the constraints cannot be satisfied, the system can say:
The movie ’Matrix’ is not on in ’Wolverhampton’ (regardless of time).
You can see other destinations, or other movies available tonight in
Wolverhampton.However, the generation templates become increasingly
complex and the system needs a ranking of constraints to create natural
language formulations which are informative and make sense. As result,
a rich user interface is perhaps easier to generate.

INTERACTIVE QA USING THE QALL-ME FRAMEWORK 245

5 CONCLUSIONS

This paper presented an RDF-based approach for implementing
interaction in the QALL-ME framework. An analysis of domain
questions revealed that they can be represented as a composition
of constraints. This usually takes the form of a conjunction of
predicates, as in the following question,What action movies with
Bruce Willis are on in Wolverhampton?which can be represented as:
hasType(x,qmo:Movie) && hasGenre(x,qmo:action)
&& hasActor(x,qmo:BruceWillis) &&
inDestination(x,qmo:Wolverhampton) . These Boolean
predicates correspond to constraints identified in the question by an
Entailment Engine which is used to address the problem of language
variability. Their truth value can be tested against a data repository
by means of inference rules determined by the domain ontology. The
Query Generation Web service combines the premises of these rules
when generating the WHERE block of a SPARQL query which is used
to retrieve the answers to the question, at the same time preserving the
semantics of the question interpretation.

The proposed mechanism for allowing user feedback consists of
injecting an RDF representation of the question interpretation into the
triples of the SPARQL query. Having direct access to this interpretation
means that the presentation module can provide feedback, suggest
alternative ways in which the question can be asked, and even answer
those variations and pre-emptively include the findings in informative
answers. The interaction is also more natural from the users’ point of
view, increasing user satisfaction.

An evaluation of the feedback revealed that simply suggesting follow-
up questions is useful, but that usually users want to know all their
options in cases where a precise answer cannot be provided. Context is
also important, and in order to make competent suggestions the system
needs to learn from the choices made by its users. A study is under
way to determine whether generating informative answers based on the
satisfiability of constraints is useful for the user. A simple feedback loop
will be created to allow more interaction based on a single question, via
the addition, modification and removal of constraints. This means that
the user does not need to pose long or repetitive questions every time
they want more information.

246 IUSTIN DORNESCU, CONSTANTIN ORĂSAN

REFERENCES

1. Harabagiu, S., Moldovan, D.: Question answering. In Mitkov, R., ed.: Oxford
Handbook of Computational Linguistics. Oxford University Press (2003) 560
– 582

2. Hersh, W.: Evaluating interactive question answering. In Strzalkowski, T.,
Harabagiu, S., eds.: Advances in Open Domain Question Answering. Springer
(2006) 431 – 455

3. Rieser, V., Lemon, O.: Does this list contain what you were searching
for? Learning adaptive dialogue strategies for interactive question answering.
Natural Language Engineering15(1) (January 2009) 55–72

4. Quarteroni, S., Manandhar, S.: Designing an interactive open-domain question
answering system. Natural Language Engineering15 (2009) 73–95

5. Sacaleanu, B., Orasan, C., Spurk, C., Ou, S., Ferrandez, O., Kouylekov, M.,
Negri, M.: Entailment-based question answering for structured data. In:
Coling 2008: Companion volume: Posters and Demonstrations, Manchester,
UK (2008) 29 – 32

6. Or̆asan, C., Dornescu, I., Ponomareva, N.: QALL-ME needs AIR: a portability
study. In: Proceedings of Adaptation of Language Resources and Technology
to New Domains (AdaptLRTtoND) Workshop, Borovets, Bulgaria (2009) 50
– 57

7. Negri, M., Magnini, B., Kouylekov, M.O.: Detecting expected answer
relations through textual entailment. In: Proceedings of 9th International
Conference on Intelligent Text Processing and Computational Linguistics,
Heidelberg, Germany, Springer (2008) 532–543

8. Ou, S., Pekar, V., Orăsan, C., Spurk, C., Negri, M.: Development and
Alignment of a Domain-Specific Ontology for Question Answering. In
European Language Resources Association (ELRA), ed.: Proceedings of
the Sixth International Language Resources and Evaluation (LREC’08),
Marrakech, Morocco (2008)

9. Magnini, B., Speranza, M., Kumar, V.: Towards interactive question
answering: An ontology-based approach. In: Proceedings of the Workshop
on Semantic Computing and Multimedia Systems (SCMS 2009), Berkeley,
California (September 2009)

I USTIN DORNESCU

RESEARCHGROUP IN COMPUTATIONAL L INGUISTICS

UNIVERSITY OF WOLVERHAMPTON, UK
E-MAIL : <I.DORNESCU2@WLV.AC.UK>

CONSTANTIN ORĂSAN

RESEARCHGROUP IN COMPUTATIONAL L INGUISTICS

UNIVERSITY OF WOLVERHAMPTON, UK
E-MAIL : <C.ORASAN@WLV.AC.UK>

INTERACTIVE QA USING THE QALL-ME FRAMEWORK 247

